

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Knora Documentation

1 Paradox Documentation

This folder contains the sources to the Knora documentation website published
under http://docs.knora.org. The src folder contains
the following documentation sources:

	src/jekyll: The Knora Documentation Overview Website

	src/paradox: The Paradox-Mardown-based Knora general documentation

	src/api-v1: The Knora JSON API V1 Request and Response Format documentation. Source can be found in salsah1/src/typescript_interfaces

	src/api-v2: The Knora JSON-LD API V2 Request and Response Format documentation.

	src/api-admin: The Knora JSON Admin API Request and Response format Swagger-based documentation.

All the different documentations are build by invoking the following command
(use one of the two):

$ sbt docs/makeSite
$ docker run --rm -it -v $PWD:/knora -v $HOME/.ivy2:/root/.ivy2 daschswiss/sbt-paradox /bin/sh -c "cd /knora && sbt docs/makeSite"

The generated documentation can be found under target/site/. To open it
locally, load target/site/paradox/index.html.

2 Previewing the Documentation Site

To preview your generated site, you can run the following command:

$ sbt docs/previewSite

which launches a static web server, or:

$ sbt docs/previewAuto

which launches a dynamic server updating its content at each modification in
your source files. Both launch the server on port 4000 and attempt to connect
your browser to http://localhost:4000/.

3 Publishing

To publish the documentation, you need to be on the develop branch inside the
docs folder and then execute the following command (use one of the two; if
using docker, then change email address of git user):

$ sbt docs/ghpagesPushSite
$ docker run --rm -it -v $PWD:/knora -v $HOME/.ivy2:/root/.ivy2 -v $HOME/.ssh:/root/.ssh sbt-paradox /bin/sh -c "cd /knora && git config --global user.email '400790+subotic@users.noreply.github.com' && sbt docs/ghpagesPushSite"

This command will build all documentation and publish it to the gh-pages branch.

4 Prerequisites for building the Knora JSON API V1 / V2 Request and Response Format documentation

The JSON request and response format is formally described using typescript interfaces. To create the docuemntation from these interfaces, we use typedoc.

Install typedoc using npm:

npm install --global typedoc

If you do not have npm (node package manager), install it first. You will find more information about npm here: https://www.npmjs.com/.

5 Prerequisites for building Paradox-based documentation

You will need Graphviz [http://www.graphviz.org/]. On Mac OS X:

$ brew install graphviz

On Linux, use your distribution’s package manager.

6 Jekyll

Installation

Jekyll is used for building the Knora Documentation Overview website, which source can be found under src/jekyll. To
install Jekyll run:

$ gem install jekyll bundler

Also, to install the necessary dependencies, run the following commands from inside the src/jekyll folder:

$ bundle

If you run into any trouble during installation, try to update your local installation beforehand, e.g., on a mac
run brew update, brew upgrade, gem update. Also, if there is a problem installing nokogiri try brew unlink xz,
then installing nokogiri and then brew link xz.

see _layouts/home.html

layout: home

Knora Documentation Overview

	Knora general documentation

	The SALSAH GUI:

	Salsah2 [https://dhlab-basel.github.io/Salsah/] (new version still in development)

	The Sipi media server: The SIPI Manual [https://dhlab-basel.github.io/Sipi/documentation/index.html]

	Triplestores: Graphdb-Free [http://graphdb.ontotext.com/documentation/free/] or GraphDB-SE [http://graphdb.ontotext.com/documentation/standard/]

Frequently Asked Questions

@@toc { depth=2 }

Data Formats

What data formats does Knora store?

See @ref:Data Formats in Knora.

Does Knora store XML files?

XML files do not lend themselves to searching and linking. Knora’s RDF storage
is better suited to its goal of facilitating data reuse.

If your XML files represent text with markup (e.g. TEI/XML [http://www.tei-c.org/]),
the recommended approach is to allow Knora to store it as
@ref:Standoff/RDF. This will allow both text and
markup to be searched using @ref:Gravsearch. Knora
can also regenerate, at any time, an XML document that is equivalent to the original one.

If you have XML that simply represents structured data (rather than text documents),
we recommend converting it to Knora resources, which are stored as RDF.

Triplestores

Which triplestores can be used with Knora?

Knora is tested with Ontotext GraphDB SE [http://graphdb.ontotext.com/].
Our goal is to support several triplestores, including open-source options.
Integration with Apache Jena Fuseki [https://jena.apache.org/documentation/fuseki2/]
has been partly implemented, but is not currently supported.

Knora Ontologies

Can a project use classes or properties defined in another project’s ontology?

Knora does not allow this to be done with project-specific ontologies.
Each project must be free to change its own ontologies, but this is not possible
if they have been used in ontologies or data created by other projects.

However, an ontology can be defined as shared, meaning that it can be used by multiple
projects, and that its creators promise not to change it in ways that could
affect other ontologies or data that are based on it. See
@ref:Shared Ontologies for details.

There will be a standardisation process for shared ontologies
(issue @github#523).

Why doesn’t Knora use rdfs:domain and rdfs:range for consistency checking?

Knora’s consistency checking uses Knora-specific properties, which are called
knora-base:subjectClassConstraint and knora-base:objectClassConstraint in
the knora-base ontology, and knora-api:subjectType and knora-api:objectType
in the knora-api ontologies. These properties express restrictions on the
possible subjects and objects of a property. If a property’s subject or object
does not conform to the specified restrictions, Knora considers it an error.

In contrast,
the RDF Schema specification says [https://www.w3.org/TR/rdf-schema/#ch_domainrange]
that rdfs:domain and rdfs:range can be used to “infer additional information”
about the subjects and objects of properties, rather than to enforce restrictions.
This is, in fact, what RDFS reasoners do in practice. For example, consider these
statements:

example:hasAuthor rdfs:range example:Person .
data:book1 example:hasAuthor data:oxygen .

To an RDFS reasoner, the first statement means: if something is used as
the object of example:hasAuthor, we can infer that it’s an
example:Person.

The second statement is a mistake; oxygen is not a person. But
an RDFS reasoner would infer that data:oxygen is actually an
example:Person, since it is used as the object of
example:hasAuthor. Queries looking for persons would then get
data:oxygen in their results, which would be incorrect.

Therefore, rdfs:domain and rdfs:range are not suitable for consistency
checking.

Knora therefore uses its own properties, along with
OWL cardinalities, which it interprets according to a “closed world”
assumption. Knora performs its own consistency checks to enforce
these restrictions. Knora repositories can also take advantage of
triplestore-specific consistency checking mechanisms.

The constraint language SHACL [https://www.w3.org/TR/shacl/] may someday
provide a standard, triplestore-independent way to implement consistency
checks, if the obstacles to its adoption can be overcome
(see Diverging views of SHACL [https://research.nuance.com/diverging-views-of-shacl/]).
For further discussion of these issues, see
SHACL and OWL Compared [http://spinrdf.org/shacl-and-owl.html].

Can a user-created property be an owl:TransitiveProperty?

No, because in Knora, a resource controls its properties. This basic
assumption is what allows Knora to enforce permissions and transaction
integrity. The concept of a transitive property would break this assumption.

Consider a link property hasLinkToFoo that is defined as an owl:TransitiveProperty,
and is used to link resource Foo1 to resource Foo2:

[image: Figure 1]Figure 1

Suppose that Foo1 and Foo2 are owned by different users, and that
the owner of Foo2 does not have permission to change Foo1.
Now suppose that the owner of Foo2 adds a link from Foo2 to Foo3,
using the transitive property:

[image: Figure 2]Figure 2

Since the property is transitive, a link from Foo1 to Foo3 is now
inferred. But this should not be allowed, because the owner of Foo2
does not have permission to add a link to Foo1.

Moreover, even if the owner of Foo2 did have that permission, the inferred
link would not have a knora-base:LinkValue (a reification), which every Knora
link must have. The LinkValue is what stores metadata about the creator
of the link, its creation date, its permissions, and so on
(see @ref:LinkValue).

Finally, if an update to one resource could modify another
resource, this would violate Knora’s model of transaction integrity, in which
each transaction can modify only one resource
(see @ref:Application-level Locking). Knora
would then be unable to ensure that concurrent transactions do not
interfere with each other.

Should 0.0.0.0 or localhost be used to access Knora locally

When running locally with the default configuration, if you want authorization cookies
to be shared between webapi and sipi, then both webapi and sipi must be accessed
over 0.0.0.0, or otherwise, the cookie will not be sent to sipi.

If no authorization cookie sharing is necessary, then both 0.0.0.0 and localhostwill
work.

Knora Documentation

@@toc { depth=2 }

@@@ index

	Introduction

	Knora Ontologies

	Knora APIs

	Publishing and Deployment

	Knora Internals

	Salsah

	Sipi

	Lucene

	Frequently Asked Questions

	Release Notes

@@@

Release Notes

These are the release notes for each version of Knora.

@@toc { depth=1 }

@@@ index

	v1.1.0

	v1.2.0

	v1.3.0

	v1.4.0

	v1.5.0

	v1.6.0

	v1.7.0

	v2.x.x

	v3.x.x

	v4.x.x

	v5.x.x

	v6.x.x

	NEXT RELEASE

	MIGRATION NOTES

@@@

Migration Notes

v2.1.0 -> v3.0.0

Data

	The property knora-base:username was added to knora-base:User. Each instance of knora-base:User needs to be
updated by adding this property and giving it a unique value.

API

	The POST /admin/user API has changed due to adding the username property. The username property needs to be supplied
for user creation requests.

Release Notes for Next Release

Write any new release notes between releases into this file. They will be moved to the correct place,
at the time of the release, because only then we will know the next release number.

Also, please change the HINT to the appropriate level:

	MAJOR: the changes introduced warrant a major number increase

	FEATURE: the changes introduced warrant a minor number increase

	FIX: the changes introduced warrant a bug fix number increase

HINT => MAJOR CHANGE

	FIX: Unescape standoff string attributes when verifying text value update (@github#1242)

	FEATURE: Remove persistent map code (@github#1254)

	FEATURE: Return user’s permission on resources and values (@github#1257)

	FEATURE: Get resources in a particular class from a project (@github#1251)

	MAJOR: Separate the knora-admin ontology from knora-api (@github#1263).
Existing repositories must be updated; see upgrade/1263-knora-admin for instructions.

	FEATURE: Add support for searching for specific list values in Gravsearch for both the simple and complex schema (@github#1314).

	REFACTOR: List value responses contain the list node’s label in the simple schema only (@github#1321)

v1.1.0 Release Notes

See the
release [https://github.com/dhlab-basel/Knora/releases/tag/v1.1.0] on
Github.

Required changes to existing data:

1. Project ontologies property changed:

The knora-base:projectOntologyGraph needs to be renamed to
knora-base:projectOntology. Also before it was a xsd:string, where
now it needs to be an IRI. The graph where the ontology is stored will
need to have the same name.

2. Project data graph property removed:

The property knora-base:projectDataGraph needs to be removed.

2. Project shortcode property added:

The knora-base:projectShortcode property was added. When adding a
project shortcode, we also need to update:

	the IRI of the project to: http://rdfh.ch/projects/[shortcode]

	the IRIs all project ontologies to:
http://www.knora.org/ontology/[shortcode]/[ontoname]

	the IRIs of lists to: http://rdfh.ch/lists/[shortcode]/[UUID]

	the IRIs of groups to: http://rdfh.ch/groups/[shortcode]/[UUID]

New features:

Bugfixes:

v1.2.0 Release Notes

See the
release [https://github.com/dhlab-basel/Knora/releases/tag/v1.2.0] and
closed tickets on the v1.2.0
milestone [https://github.com/dhlab-basel/Knora/milestone/6] on Github.

Required changes to existing data:

1. Project keywords (admin data)

Project keywords need to be transformed into sequences and property
changed to projectKeyword (singular).

before:

<http://rdfh.ch/projects/00FF>
 knora-base:projectKeywords "images, collection"^^xsd:string .

after:

<http://rdfh.ch/projects/00FF>
 knora-base:projectKeyword "images"^^xsd:string, "collection"^^xsd:string ;

2. Project descriptions (admin data)

Project descriptions need to be transformed into sequences with language
tag.

before:

<http://rdfh.ch/projects/00FF>
 knora-base:projectDescription "A demo project of a collection of images"^^xsd:string .

after:

<http://rdfh.ch/projects/00FF>
 knora-base:projectDescription "A demo project of a collection of images"@en .

3. salsah-gui:guiOrder

The predicate salsah-gui:guiOrder is now attached to cardinalities in
class definitions, instead of attaching it to property definitions. This
allows the same property to be first in one class and last in another
class.

Before:

:title rdf:type owl:ObjectProperty ;
 salsah-gui:guiOrder "1"^^xsd:integer .

After:

:book rdf:type owl:Class ;
 rdfs:subClassOf knora-base:Resource ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :title ;
 owl:minCardinality "1"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "1"^^xsd:nonNegativeInteger
]

Existing project-specific ontologies must be updated. You can use the
command-line tool org/knora/webapi/util/TransformOntology.scala to do
this automatically. First dump your ontology to a Turtle file. Then at
the sbt console, type:

runMain org.knora.webapi.util.TransformOntology -t guiorder INPUT OUTPUT

For INPUT, use the absolute path of the Turtle file representing your
existing ontology. For OUTPUT, use the absolute path of the output file
to be created.

Note that, because of a limitation of the current version of the RDF4J
Turtle generation library, the generated Turtle represents cardinalities
as labelled blank nodes, rather than as anonymous blank nodes, which
would be more readable (see this pull
request [https://github.com/eclipse/rdf4j/pull/890]).

Then replace the contents of your ontology’s named graph in the
triplestore with the contents of the transformed Turtle file, and
restart Knora. Be sure to test this on a test
installation using a copy of your data and ontologies, before updating
the ontology used by a live server.

Also, you have to replace the salsah-gui ontology that you have in the
triplestore with the one in salsah-gui.ttl.

New features:

	

General

: - Change: Return differently formatted JSON responses for
 exception messages, depending on which route (`v1`, `v2`\`
 or `admin`) was accessed.

	

Admin API

: - Change: Project shortcode is required for the creation of
 new projects
 - Change: Project keywords are now a sequence. Needs change to
 existing data. Please see example above.
 - Change: Project description has language tag and is returned
 as array. Needs change to existing data. Please see
 example above.
 - Change: Remove institution from project (will be added later
 with the FAIR metadata)
 - Change: Sorting of collections with admin objects (user,
 group, project)
 - New: Keywords endpoint at `/admin/projects/keywords` returns
 all unique keywords (as strings) for all projects in an
 array
 - New: Keywords endpoint at
 `/admin/projects/keywords/[projectIri]` returns all keywords
 of a single project.
 - New: Lists endpoint at `/admin/lists/` allows new lists to
 be created.
 - New: Lists endpoint at `/admin/lists/infos/<listIri>` allows
 to change basic list information.

Bugfixes:

v1.3.0 Release Notes

See the
release [https://github.com/dhlab-basel/Knora/releases/tag/v1.3.0] and
closed tickets on the v1.3.0
milestone [https://github.com/dhlab-basel/Knora/milestone/7] on Github.

Required changes to existing data:

1. Replace salsah-gui ontology

You must replace the salsah-gui ontology that you have in the
triplestore with the one in salsah-gui.ttl.

New features:

	More support for salsah-gui elements and attributes in ontologies

	Serve the salsah-gui ontology in API v2 in the complex schema.

	Show salsah-gui:guiElement and salsah-gui:guiAttribute when
serving ontologies in API v2 in the complex schema.

	Allow salsah-gui:guiElement and salsah-gui:guiAttribute to
be included in new property definitions created via API v2.

	Change salsah-gui so that GraphDB’s consistency checker can
check the use of guiElement and guiAttribute.

	Changes to application.conf. The sipi and web-api sections
have received a big update, adding separate settings for internal
and external host settings:

app {
 knora-api {
 // relevant for direct communication inside the knora stack
 internal-host = "0.0.0.0"
 internal-port = 3333

 // relevant for the client, i.e. browser
 external-protocol = "http" // optional ssl termination needs to be done by the proxy
 external-host = "0.0.0.0"
 external-port = 3333
 }

 sipi {
 // relevant for direct communication inside the knora stack
 internal-protocol = "http"
 internal-host = "localhost"
 internal-port = 1024

 // relevant for the client, i.e. browser
 external-protocol = "http"
 external-host = "localhost"
 external-port = 1024

 prefix = "knora"
 file-server-path = "server"
 path-conversion-route = "convert_from_binaries"
 file-conversion-route = "convert_from_file"
 image-mime-types = ["image/tiff", "image/jpeg", "image/png", "image/jp2"]
 movie-mime-types = []
 sound-mime-types = []
 }

 salsah1 {
 base-url = "http://localhost:3335/"
 project-icons-basepath = "project-icons/"
 }
}

Bugfixes:

	When API v2 served knora-api (complex schema),
salsah-gui:guiElement and salsah-gui:guiAttribute were not shown
in properties in that ontology.

	The predicate salsah-gui:guiOrder was not accepted when creating a
property via API v2.

v1.4.0 Release Notes

See the
release [https://github.com/dhlab-basel/Knora/releases/tag/v1.4.0] and closed tickets on the
v1.4.0 milestone [https://github.com/dhlab-basel/Knora/milestone/8] on Github.

Required changes to existing data:

	Every ontology must now have the property knora-base:attachedToProject, which points to the IRI of the project
that is responsible for the ontology. This must be added to each project-specific ontology in existing repositories.
All built-in ontologies have been updated to have this property, and must therefore be reloaded into existing
repositories.The property knora-base:projectOntology has been removed, and must be removed from project definitions in
existing repositories.

	Every project now needs to have the property knora-base:projectShortcode set.

New features:

	Added OpenAPI / Swagger API documentation route

	Knora now checks the validity of ontologies on startup.

	The property knora-base:projectShortcode is now a required property (was optional).

Bugfixes:

	API v1 extended search was not properly handling multiple conditions
on list values (issue #800)

	Fix image orientation in SALSAH 1 (issue #726)

v1.5.0 Release Notes

See the
release [https://github.com/dhlab-basel/Knora/releases/tag/v1.5.0] and closed tickets on the
v1.5.0 milestone [https://github.com/dhlab-basel/Knora/milestone/9] on Github.

Required changes to existing data:

New features:

	Resources can be returned in the simple ontology schema (#833).

	Text values can specify the language of the text (#819).

	Responses can be returned in Turtle and RDF/XML (#851).

Bugfixes:

	Incorrect representation of IRI object values in JSON-LD (#835)

	GenerateContributorsFile broken (#797)

v1.6.0 Release Notes

See the
release [https://github.com/dhlab-basel/Knora/releases/tag/v1.6.0] and closed tickets on the
v1.6.0 milestone [https://github.com/dhlab-basel/Knora/milestone/10] on Github.

Required changes to existing data:

	A project is now required to have at least one description, so potentially a description will need
to be added to those projects that don’t have one.

New features:

General:

	Added a /health endpoint

	KnoraService waits on startup for a triplestore before trying to load the ontologies

Gravsearch enhancements:

	Accept queries in POST requests (@github#650).

	Allow a Gravsearch query to specify the IRI of the main resource (@github#871) (by allowing BIND).

	Allow lang to be used with !=.

	A UNION or OPTIONAL can now be nested in an OPTIONAL (@github#882).

	Gravsearch now does type inference (@github#884).

	The Knora API v2 complex schema can now be used in Gravsearch, making it possible to search
for list nodes (@github#899).

Admin API:

	Make project description required (@github#875).

Conversion to TEI:

	Conversion of standard standoff entities to TEI

	Custom conversion of project specific standoff entities and metadata to TEI

Sipi integration:

	The Knora specific Sipi configuration and scripts can now be found under the sipi/ directory (@github#404).

	Documentation on how Sipi can be started changed (@github#404).

Bugfixes:

	Allow a class or property definition to have more than one object for rdf:type (@github#885).

	Exclude list values from v2 fulltext search (@github#906).

Gravsearch fixes:

	Allow the lang function to be used in a comparison inside AND/OR (@github#846).

	Fix the processing of resources with multiple incoming links that use the same property (@github#878).

	Fix the parsing of a FILTER inside an OPTIONAL (@github#879).

	Require the match function to be the top-level expression in a FILTER.

v1.7.x Release Notes

See the
release [https://github.com/dhlab-basel/Knora/releases/tag/v1.7.0] and closed tickets on the
v1.7.0 milestone [https://github.com/dhlab-basel/Knora/milestone/11] on Github.

v1.7.0

	To use the inferred Gravsearch predicate knora-api:standoffTagHasStartAncestor,
you must recreate your repository with the updated KnoraRules.pie.

New features:

	Gravsearch queries can now match standoff markup (@github#910).

	Add Graphdb-Free initialization scripts for local and docker installation (@github#955).

	Create temp dirs at startup (@github#951)

	Update versions of monitoring tools (@github#951)

Bugfixes:

	timeout or java.lang.OutOfMemoryError when using /v1/resources/xmlimportschemas/ for some ontologies (@github#944)

	Timeout cleanup (@github#951)

	Add separate dispatchers (@github#945)

	“Property not found”-problem when using seqnum during bulk-import (@github#971)

	Exceeded configured max-open-requests value (@github#972)

v1.7.1

Required changes to existing data:

	In application.conf:

	app.triplestore.dbtype = “graphdb-se”

	app.triplestore.use-https = false

	The Knora’s Sipi scripts are now stored in the knora/sipi folder and need to be provided to the Sipi server at
runtime.

Bugfixes:

	“Property not found”-problem when using seqnum during bulk-import (@github#971)

	Exceeded configured max-open-requests value (@github#972)

	Startup check does not detect running triplestore in production environment with SSL enabled (@github#968)

v2.x.x Release Notes

v2.0.0

This is the first release with the new version numbering convention. From now on, if any changes
to the existing data is necessary for a release, then this release will have its major number increased.
Please see the Release Versioning Convention [https://github.com/dhlab-basel/Knora#release-versioning-convention]
description.

Required changes to existing data:

	a knora-base:ListNode must have at least one rdfs:label. (@github#991)

New features:

	add developer-centric docker-compose.yml for starting the Knora / GraphDB / Sipi / Salsah1 (@github#979)

	configure webapi and salsah1 thorough environment variables (@github#979)

	update for Java 10 (@github#979)

	comment out the generation of fat jars from KnoraBuild.sbt (for now) (@github#979)

	update ehcache (@github#979)

	update sbt to 1.2.1 (@github#979)

	remove Kamon monitoring (for now) since we don’t see anything meaningful there. We probably will have to instrument Knora by hand and then use Kamon for access. (@github#979)

	update Dockerfiles for webapi and salsah1 (@github#979)

	follow subClassOf when including ontologies in XML import schemas (@github#991)

	add support for adding list child nodes (@github#991)

	add support for shared ontologies (@github#987)

Bugfixes:

	trouble with xml-checker and/or consistency-checker during bulk import (@github#978)

	ontology API error with link values (@github#988)

v2.1.0

New features:

	Implement graph query in API v2 (@github#1009)

	Expose additional webapi settings as environment variables. Please see the @ref:Configuration
section in the documentation for more information (@github#1025)

Bugfixes:

	sipi container config / sipi not able to talk to knora (@github#988)

v3.x.x Release Notes

v3.0.0

	[BREAKING ONTOLOGY CHANGE] The property knora-base:username was added and is required for knora-base:User. (@github#1047)

	[BREAKING API CHANGE] The /admin/user API has changed due to adding the username property. (@github#1047)

	[FIX] Incorrect standoff to XML conversion if empty tag has empty child tag (@github#1054)

	[FEATURE] Add default permission caching (@github#1062)

	[FIX] Fix unescaping in update check and reading standoff URL (@github#1074)

	[FIX] Incorrect standoff to XML conversion if empty tag has empty child tag (@github#1054)

	[FEATURE] Create image file values in API v2 (@github#1011). Requires Sipi with tagged commit v1.4.1-SNAPSHOT or later.

v4.x.x Release Notes

v4.0.0

	MAJOR CHANGE: mapping creation request and response formats have changed (@github#1094).

	MINOR CHANGE: Update technical user docs (@github#1085)

	BUGFIX CHANGE: Fix permission checking in API v2 resource creation (@github#1104)

v5.x.x Release Notes

v5.0.0

	MAJOR: Fix property names for incoming links (@github#1144)

	MAJOR: Generate and resolve ARK URLs for resources (@github#1161). Projects
that have resource IRIs that do not conform to the format specified in
https://docs.knora.org/paradox/03-apis/api-v2/knora-iris.html#iris-for-data
must update them.

	MAJOR: Use project shortcode in IIIF URLs (@github#1191). If you have file value IRIs containing the substring /reps/, you must replace /reps/ with /values/.

	FEATURE: Update resource metadata in API v2 (@github#1131)

	FEATURE: Allow setting resource creation date in bulk import (@github#1151)

	FEATURE: The v2/authentication route now also initiates cookie creation (the same as v1/authentication) (@github#1159)

	FEATURE: Allow to specify restricted view settings for a project which Sipi will adhere to (@github#690).

	FIX: Triplestore connection error when using dockerComposeUp (@github#1122)

	FIX: Reject link value properties in Gravsearch queries in the simple schema (@github#1145)

	FIX: Fix error-checking when updating cardinalities in ontology API (@github#1142)

	FIX: Allow hasRepresentation in an ontology used in a bulk import (@github#1171)

	FIX: Set cookie domain to the value specified in application.conf with the setting cookie-domain (@github#1169)

	FIX: Fix processing of shared property in bulk import (@github#1182)

v6.x.x Release Notes

v6.0.0

	MAJOR: Use HTTP POST to mark resources and values as deleted (@github#1203)

	MAJOR: Reorganize user and project routes (@github#1209)

	FEATURE: Secure routes returning user informations (@github#961)

	MAJOR: Change all xsd:dateTimeStamp to xsd:dateTime in the triplestore (@github#1211).
Existing data must be updated; see upgrade/1211-datetime for instructions.

	FIX: Ignore order of attributes when comparing standoff (@github#1224).

	FEATURE: Query version history (@github#1214)

	FIX: Don’t allow conflicting cardinalities (@github#1229)

	MAJOR: Remove preview file values (@github#1230). Existing data must be updated;
see upgrade/1230-delete-previews for instructions.

v6.0.1

	FIX: Unescape standoff string attributes when verifying text value update (@github#1242)

Data Formats in Knora

@@toc

As explained in @ref:What Is Knora?, Knora stores data
in a small number of formats that are suitable for long-term preservation while
facilitating data reuse.

The following is a non-exhaustive list of data formats and how their content
can be stored and managed by Knora:

Original Format	Format in Knora
———————————————-	——
Text (XML, LaTeX, Microsoft Word, etc.)	@ref:Knora resources (RDF) containing @ref:Standoff/RDF
Tabular data, including relational databases	@ref:Knora resources
Data in tree or graph structures	@ref:Knora resources
Images (JPEG, PNG, etc.)	JPEG 2000 files stored by Sipi [https://github.com/dhlab-basel/Sipi]
Audio and video files	Audio and video files stored by Sipi [https://github.com/dhlab-basel/Sipi] (in archival formats to be determined)
PDF	Can be stored by Sipi, but data reuse is improved by extracting the text for storage as @ref:Standoff/RDF

An Example Project

This section introduces some of the basic concepts involved in creating
ontologies for Knora projects, by means of a relatively simple example
project. Before reading this document, it will be helpful to have some
familiarity with the basic concepts explained in knora-base.

Knora comes with two example projects, called incunabula and
images-demo. Here we will consider the incunabula example, which is
a reduced version of a real research project on early printed books. It
is designed to store an image of each page of each book, as well as RDF
data about books, pages, their contents, and relationships between them.
At the moment, only the RDF data is provided in the example project, not
the images.

The incunabula ontology is in the file incunabula-onto.ttl, and its
data is in the file incunabula-demo-data.ttl. Both these files are in
a standard RDF file format called
Turtle [https://www.w3.org/TR/turtle/]. The Knora distribution includes
sample scripts (in the webapi/scripts directory) for importing these
files directly into different triplestores. If you are starting a new
project from scratch, you can adapt these scripts to import your
ontology (and any existing RDF data) into your triplestore for use with
Knora.

The syntax of Turtle is fairly simple: it is basically a sequence of
triples. We will consider some details of Turtle syntax as we go along.

The Incunabula Ontology

Here we will just focus on some of the main aspects of the ontology. An
ontology file typically begins by defining prefixes for the IRIs of
other ontologies that will be referred to. First there are some prefixes
for ontologies that are very commonly used in RDF:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix dcterms: <http://purl.org/dc/terms/> .

The rdf, rdfs, and owl ontologies contain basic properties that
are used to define ontology entities. The xsd ontology contains
definitions of literal data types such as string and integer. (For
more information about these ontologies, see the references in
knora-base.) The foaf ontology contains classes and properties for
representing people. The dcterms ontology represents Dublin
Core [http://dublincore.org/] metadata.

Then we define prefixes for Knora ontologies:

@prefix knora-base: <http://www.knora.org/ontology/knora-base#> .
@prefix salsah-gui: <http://www.knora.org/ontology/salsah-gui#> .

The knora-base ontology contains Knora’s core abstractions, and is
described in knora-base. The salsah-gui ontology includes properties
that Knora projects must use to enable SALSAH, Knora’s generic virtual
research environment.

For convenience, we can use the empty prefix to refer to the
incunabula ontology itself:

@prefix : <http://www.knora.org/ontology/0803/incunabula#> .

However, outside the ontology file, it would make more sense to define
an incunabula prefix to refer to the incunabula ontology.

Properties

All the content produced by a Knora project must be stored in Knora
resources (see incunabula-resource-classes). Resources have properties
that point to different parts of their contents; for example, the
incunabula project contains books, which have properties like title.
Every property that poitns to a Knora value must be a subproperty of
knora-base:hasValue, and every property that points to another Knora
resource must be a subproperty of knora-base:hasLinkTo.

Here is the definition of the incunabula:title property:

:title rdf:type owl:ObjectProperty ;

 rdfs:subPropertyOf knora-base:hasValue, dcterms:title ;

 rdfs:label "Titel"@de ,
 "Titre"@fr ,
 "Titolo"@it ,
 "Title"@en ;

 knora-base:subjectClassConstraint :book ;

 knora-base:objectClassConstraint knora-base:TextValue ;

 salsah-gui:guiElement salsah-gui:SimpleText ;

 salsah-gui:guiAttribute "size=80" ,
 "maxlength=255" .

The definition of incunabula:title consists of a list of triples, all
of which have :title as their subject. To avoid repeating :title for
each triple, Turtle syntax allows us to use a semicolon (;) to
separate triples that have the same subject. Moreover, some triples also
have the same predicate; a comma (,) is used to avoid repeating the
predicate. The definition of :title says:

	rdf:type owl:ObjectProperty: It is an owl:ObjectProperty. There are
two kinds of OWL properties: object properties and datatype properties. Object properties point to objects, which have IRIs and
can have their own properties. Datatype properties point to literal
values, such as strings and integers.

	rdfs:subPropertyOf knora-base:hasValue, dcterms:title: It is a
subproperty of knora-base:hasValue and dcterms:title. Since the
objects of this property will be Knora values, it must be a
subproperty of knora-base:hasValue. To facilitate searches, we
have also chosen to make it a subproperty of dcterms:title. In the
Knora API v2, if you do a search for resources that have a certain
dcterms:title, and there is a resource with a matching
incunabula:title, the search results could include that resource.

	rdfs:label "Titel"@de, etc.: It has the specified labels in
various languages. These are needed, for example, by user
interfaces, to prompt the user to enter a value.

	knora-base:subjectClassConstraint :book: The subject of the
property must be an incunabula:book.

	knora-base:objectClassConstraint knora-base:TextValue: The object
of this property must be a knora-base:TextValue (which is a
subclass of knora-base:Value).

	salsah-gui:guiElement salsah-gui:SimpleText: When SALSAH asks a
user to enter a value for this property, it should use a simple text
field.

	salsah-gui:guiAttribute "size=80" , "maxlength=255": The SALSAH
text field for entering a value for this property should be 80
characters wide, and should accept at most 255 characters.

The incunabula ontology contains several other property definitions
that are basically similar. Note that different subclasses of Value
are used. For example, incunabula:pubdate, which represents the
publication date of a book, points to a knora-base:DateValue. The
DateValue class stores a date range, with a specified degree of
precision and a preferred calendar system for display.

A property can point to a Knora resource instead of to a Knora value.
For example, in the incunabula ontology, there are resources
representing pages and books, and each page is part of some book. This
relationship is expressed using the property incunabula:partOf:

:partOf rdf:type owl:ObjectProperty ;

 rdfs:subPropertyOf knora-base:isPartOf ;

 rdfs:label "ist ein Teil von"@de ,
 "est un part de"@fr ,
 "e una parte di"@it ,
 "is a part of"@en ;

 rdfs:comment """Diese Property bezeichnet eine Verbindung zu einer anderen Resource, in dem ausgesagt wird, dass die vorliegende Resource ein integraler Teil der anderen Resource ist. Zum Beispiel ist eine Buchseite ein integraler Bestandteil genau eines Buches."""@de ;

 knora-base:subjectClassConstraint :page ;

 knora-base:objectClassConstraint :book ;

 salsah-gui:guiElement salsah-gui:Searchbox .

The key things to notice here are:

	rdfs:subPropertyOf knora-base:isPartOf: The Knora base ontology
provides a generic isPartOf property to express part-whole
relationships. Like many properties defined in knora-base, a
project cannot use knora-base:isPartOf directly, but must make a
subproperty such as incunabula:partOf. It is important to note
that knora-base:isPartOf is a subproperty of
knora-base:hasLinkTo. Any property that points to a
knora-base:Resource must be a subproperty of
knora-base:hasLinkTo. In Knora terminology, such a property is
called a link property.

	knora-base:objectClassConstraint :book: The object of this
property must be a member of the class incunabula:book, which, as
we will see below, is a subclass of knora-base:Resource.

	salsah-gui:guiElement salsah-gui:Searchbox: When SALSAH prompts a
user to select the book that a page is part of, it should provide a
search box enabling the user to find the desired book.

Because incunabula:partOf is a link property, it must always
accompanied by a link value property, which enables Knora to store
metadata about each link that is created with the link property. This
metadata includes the date and time when the link was created, its
owner, the permissions it grants, and whether it has been deleted.
Storing this metadata allows Knora to authorise users to see or modify
the link, as well as to query a previous state of a repository in which
a deleted link had not yet been deleted. (The ability to query previous
states of a repository is planned for Knora API version 2.)

The name of a link property and its link value property must be related
by the following naming convention: to determine the name of the link
value property, add the word Value to the name of the link property.
Hence, the incunabula ontology defines the property partOfValue:

:partOfValue rdf:type owl:ObjectProperty ;

 rdfs:subPropertyOf knora-base:isPartOfValue ;

 knora-base:subjectClassConstraint :page ;

 knora-base:objectClassConstraint knora-base:LinkValue .

As a link value property, incunabula:partOfValue must point to a
knora-base:LinkValue. The LinkValue class is an RDF reification of
a triple (in this case, the triple that links a page to a book). For
more details about this, see knora-base-linkvalue.

Note that the property incunabula:hasAuthor points to a
knora-base:TextValue, because the incunabula project represents
authors simply by their names. A more complex project could represent
each author as a resource, in which case incunabula:hasAuthor would
need to be a subproperty of knora-base:hasLinkTo.

Resource Classes

The two main resource classes in the incunabula ontology are book
and page. Here is incunabula:book:

:book rdf:type owl:Class ;

 rdfs:subClassOf knora-base:Resource , [
 rdf:type owl:Restriction ;
 owl:onProperty :title ;
 owl:minCardinality "1"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "1"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :hasAuthor ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "2"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :publisher ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "3"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :publoc ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "4"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :pubdate ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "5"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :location ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "6"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :url ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "7"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :description ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "2"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :physical_desc ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "9"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :note ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "10"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :citation ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "5"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :book_comment ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "12"^^xsd:nonNegativeInteger
] ;

 knora-base:resourceIcon "book.gif" ;

 rdfs:label "Buch"@de ,
 "Livre"@fr ,
 "Libro"@it ,
 "Book"@en ;

 rdfs:comment """Diese Resource-Klasse beschreibt ein Buch"""@de .

Like every Knora resource class, incunabula:book is a subclass of
knora-base:Resource. It is also a subclass of a number of other
classes of type owl:Restriction, which are defined in square brackets,
using Turtle’s syntax for anonymous blank nodes. Each owl:Restriction
specifies a cardinality for a property that is allowed in resources of
type incunabula:book. A cardinality is indeed a kind of restriction:
it means that a resource of this type may have, or must have, a certain
number of instances of the specified property. For example,
incunabula:book has cardinalities saying that a book must have at
least one title and at most one publication date. In the Knora API
version 1, the word ‘occurrence’ is used instead of ‘cardinality’.

The OWL cardinalities supported by Knora are described in
@ref:OWL Cardinalities.

Note that incunabula:book specifies a cardinality of
owl:minCardinality 0 on the property incunabula:hasAuthor. At first
glance, this might seem as if it serves no purpose, since it says that
the property is optional and can have any number of instances. You may
be wondering whether this cardinality could simply be omitted from the
definition of incunabula:book. However, Knora requires every property
of a resource to have some cardinality in the resource’s class. This is
because Knora uses the cardinalities to determine which properties are
possible for instances of the class, and the Knora API relies on this
information. If there was no cardinality for incunabula:hasAuthor,
Knora would not allow a book to have an author.

Each owl:Restriction specifying a cardinality can include the predicate
salsah-gui:guiOrder, which tells the SALSAH GUI the order the properties
should be displayed in.

Here is the definition of incunabula:page:

:page rdf:type owl:Class ;

 rdfs:subClassOf knora-base:StillImageRepresentation , [
 rdf:type owl:Restriction ;
 owl:onProperty :pagenum ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "1"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :partOfValue ;
 owl:cardinality "1"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "2"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :partOf ;
 owl:cardinality "1"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "2"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :seqnum ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "3"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :description ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "2"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :citation ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "5"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :page_comment ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "6"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :origname ;
 owl:cardinality "1"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "7"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :hasLeftSidebandValue ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "10"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :hasLeftSideband ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "10"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :hasRightSidebandValue ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "11"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :hasRightSideband ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "11"^^xsd:nonNegativeInteger
] , [
 rdf:type owl:Restriction ;
 owl:onProperty :transcription ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger ;
 salsah-gui:guiOrder "12"^^xsd:nonNegativeInteger
] ;

 knora-base:resourceIcon "page.gif" ;

 rdfs:label "Seite"@de ,
 "Page"@fr ,
 "Page"@en ;

 rdfs:comment """Eine Seite ist ein Teil eines Buchs"""@de ,
 """Une page est une partie d'un livre"""@fr ,
 """A page is a part of a book"""@en .

The incunabula:page class is a subclass of
knora-base:StillImageRepresentation, which is a subclass of
knora-base:Representation, which is a subclass of
knora-base:Resource. The class knora-base:Representation is used for
resources that contain metadata about files stored by Knora. Each It has
different subclasses that can hold different types of files, including
still images, audio, and video files. A given Representation can store
metadata about several different files, as long as they are of the same
type and are semantically equivalent, e.g. are different versions of the
same image with different colorspaces, so that coordinates in one file
will work in the other files.

In Knora, a subclass inherits the cardinalities defined in its
superclasses. Let’s look at the class hierarchy of incunabula:page,
starting with knora-base:Representation:

:Representation rdf:type owl:Class ;

 rdfs:subClassOf :Resource , [
 rdf:type owl:Restriction ;
 owl:onProperty :hasFileValue ;
 owl:minCardinality "1"^^xsd:nonNegativeInteger
] ;

 rdfs:comment "A resource that can store one or more FileValues"@en .

This says that a Representation must have at least one instance of the
property hasFileValue, which is defined like this:

:hasFileValue rdf:type owl:ObjectProperty ;

 rdfs:subPropertyOf :hasValue ;

 :subjectClassConstraint :Representation ;

 :objectClassConstraint :FileValue .

The subject of hasFileValue must be a Representation, and its object
must be a FileValue. There are different subclasses of FileValue for
different kinds of files, but we’ll skip the details here.

This is the definition of knora-base:StillImageRepresentation:

:StillImageRepresentation rdf:type owl:Class ;

 rdfs:subClassOf :Representation , [
 rdf:type owl:Restriction ;
 owl:onProperty :hasStillImageFileValue ;
 owl:minCardinality "1"^^xsd:nonNegativeInteger
] ;

 rdfs:comment "A resource that can contain two-dimensional still image files"@en .

It must have at least one instance of the property
hasStillImageFileValue, which is defined as follows:

:hasStillImageFileValue rdf:type owl:ObjectProperty ;

 rdfs:subPropertyOf :hasFileValue ;

 :subjectClassConstraint :StillImageRepresentation ;

 :objectClassConstraint :StillImageFileValue .

Because hasStillImageFileValue is a subproperty of hasFileValue, the
cardinality on hasStillImageFileValue, defined in the subclass
StillImageRepresentation, overrides the cardinality on hasFileValue,
defined in the superclass Representation. In other words, the more
general cardinality in the superclass is replaced by a more specific
cardinality in the base class. Since incunabula:page is a subclass of
StillImageRepresentation, it inherits the cardinality on
hasStillImageFileValue. As a result, a page must have at least one
image file attached to it.

Here’s another example of cardinality inheritance. The class
knora-base:Resource has a cardinality for knora-base:seqnum. The
idea is that resources of any type could be arranged in some sort of
sequence. As we saw above, incunabula:page is a subclass of
knora-base:Resource. But incunabula:page has its own cardinality for
incunabula:seqnum, which is a subproperty of knora-base:seqnum. Once
again, the subclass’s cardinality on the subproperty replaces the
superclass’s cardinality on the superproperty: a page is allowed to have
an incunabula:seqnum, but it is not allowed to have a
knora-base:seqnum.

Introduction

@@toc { depth=2 }

@@@ index

	What Is Knora?

	Data Formats in Knora

	Standoff/RDF Text Markup

	An Example Project

@@@

Standoff/RDF Text Markup

@@toc

Standoff markup [http://uahost.uantwerpen.be/lse/index.php/lexicon/markup-standoff/]
is text markup that is stored separately from the content it describes. Knora’s
Standoff/RDF markup stores content as a simple Unicode string, and represents markup
separately as RDF data. This approach has some advantages over commonly used markup systems
such as XML:

First, XML and other hierarchical markup systems assume that a document is a hierarchy, and
have difficulty representing
non-hierarchical structures [http://www.tei-c.org/release/doc/tei-p5-doc/en/html/NH.html]
or multiple overlapping hierarchies. Standoff markup can easily represent these structures.

Second, markup languages are typically designed to be used in text files. But there is no
standard system for searching and linking together many different text files containing
markup. It is possible to do this in a non-standard way by using an XML database
such as eXist [http://exist-db.org], but this still does not allow for queries that include
text as well as non-textual data not stored in XML.

By storing markup as RDF, Knora can search for markup structures in the same way that it
searches for any RDF data structure. This makes it possible to do searches that combine
text-related criteria with other sorts of criteria. For example, if persons and events are
represented as Knora resources, and texts are represented in Standoff/RDF, a text can contain
tags representing links to persons or events. You could then search for a text that mentions a
person who lived in the same city as another person who is the author of a text that mentions an
event that occurred during a certain time period.

In Knora’s Standoff/RDF, a tag is an RDF entity that is linked to a
@ref:text value. Each tag points to a substring
of the text, and has semantic properties of its own. You can define your own tag classes
in your ontology by making subclasses of knora-base:StandoffTag, and attach your own
properties to them. You can then search for those properties using Knora’s search language,
@ref:Gravsearch.

The built-in @ref:knora-base and standoff ontologies
provide some basic tags that can be reused or extended. These include tags that represent
Knora data types. For example, knora-base:StandoffDateTag represents a date in exactly the
same way as a Knora @ref:date value, i.e. as a
calendar-independent astronomical date. You can use this tag as-is, or extend it by making
a subclass, to represent dates in texts. Gravsearch includes built-in functionality for
searching for these data type tags. For example, you can search for text containing a date that
falls within a certain @ref:date range.

Knora’s APIs support automatic conversion between XML and Standoff/RDF. To make this work,
Standoff/RDF stores the order of tags and their hierarchical relationships. You must define an
@ref:XML-to-Standoff Mapping for your standoff tag classes and properties.
Then you can import an XML document into Knora, which will store it as Standoff/RDF. The text and markup
can then be searched using Gravsearch. When you retrieve the document, Knora converts it back to the
original XML.

To represent overlapping or non-hierarchical markup in exported and imported XML, Knora supports
CLIX [http://conferences.idealliance.org/extreme/html/2004/DeRose01/EML2004DeRose01.html#t6] tags.

Future plans for Standoff/RDF include:

	Creation and retrieval of standoff markup as such via the Knora API,
without using XML as an input/output format.

	A user interface for editing standoff markup.

	The ability to create resources that cite particular standoff tags in other resources.

What Is Knora?

@@toc

Knora (Knowledge Organization, Representation, and Annotation) is a
a content management system for the long-term preservation and reuse of
humanities data. It is designed to accommodate data with a complex internal
structure, including data that could be stored in relational databases.

Knora aims to solve key problems in the long-term preservation and reuse
of humanities data:

First, traditional archives preserve data, but do not facilitate reuse. Typically,
only metadata can be searched, not the data itself. You have to first identify
an information package that might be of interest, then download it, and only
then can you find out what’s really in it. This is time-consuming, and
makes it impractical to reuse data from many different sources.

Knora solves this problem by keeping the data alive. You can query all the data
in a Knora repository, not just the metadata. You can import thousands of databases into
Knora, and run queries that search through all of them at once.

Another problem is that researchers use a multitude of different data formats, many of
which are proprietary and quickly become obsolete. It is not practical to maintain
all the programs that were used to create and read old data files, or even
all the operating systems that these programs ran on.

Instead of preserving all these data formats, Knora supports
the conversion of all sorts of data to a @ref:small number of formats
that are suitable for long-term preservation, and that maintain the data’s meaning and
structure:

	Non-binary data is stored as
RDF [http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/], in a dedicated
database called a triplestore. RDF is an open, vendor-independent standard
that can express any data structure.

	Binary media files (images, audio, and video) are converted to a few specialised
archival file formats and stored by Sipi [https://github.com/dhlab-basel/Sipi],
with metadata stored in the triplestore.

Knora then makes this data available for reuse via its generic, standards-based
application programming interfaces (APIs). A virtual research environment
(VRE) can then use these APIs to search, link together, and add to data
from different research projects in a unified way.

Humanities-Focused Data Storage

Each project creates its own data model (or ontology), describing the types of
items it wishes to store, using basic data types defined in Knora’s
@ref:base ontology.
This gives projects the freedom to describe their data in a way that makes
sense to them, while allowing Knora to support searching and linking across projects.

Knora has built-in support for data structures that are commonly needed in
humanities data, and that present unique challenges for any type of database storage.

Calendar-Independent Dates

In the humanities, a date could be based on any sort of calendar (e.g.
Gregorian, Julian, Islamic, or Hebrew). Knora stores dates using a calendar-independent,
astronomical representation, and converts between calendars as needed. This makes
it possible to search for a date in one calendar, and get search results in other calendars.

Flexible, Searchable Text Markup

Commonly used text markup systems, such as TEI/XML [http://www.tei-c.org/],
have to represent a text as a hierarchy, and therefore have trouble supporting
overlapping markup. Knora supports @ref:Standoff/RDF markup: the markup is stored
as RDF data, separately from the text, allowing for overlapping markup. Knora’s RDF-based standoff
is designed to support the needs of complex digital critical editions. Knora
can import any XML document (including TEI/XML) for storage as standoff/RDF,
and can regenerate the original XML document at any time.

Powerful Searches

Knora’s API provides a search language, @ref:Gravsearch,
that is designed to meet the needs of humanities researchers. Gravsearch supports Knora’s
humanites-focused data structures, including calendar-independent dates and standoff markup, as well
as fast full-text searches. This allows searches to combine text-related criteria with any other
criteria. For example, you could search for a text that contains a certain word
and also mentions a person who lived in the same city as another person who is the
author of a text that mentions an event that occurred during a certain time period.

Access Control

The RDF standards do not include any concept of permissions. Knora’s permission
system allows project administrators and users to determine who can see or
modify each item of data. Knora filters search results according to each
user’s permissions.

Data History

RDF does not have a concept of data history. Knora maintains all previous
versions of each item of data. Ordinary searches return only the latest version,
but you can
@ref:obtain
and
@ref:cite
an item as it was at any point in the past.

Data Consistency

RDF triplestores do not implement a standardised way of ensuring the consistency
of data in a repository. Knora ensures that all data is consistent, conforms
the project-specific data models, and meets Knora’s minimum requirements
for interoperability and reusability of data.

Linked Open Data

Knora supports publishing data online as as Linked Open Data [http://linkeddata.org/],
using open standards to allow interoperability between different repositories
on the web.

Build Your Own Application

Knora can be used with a general-purpose, browser-based VRE called
SALSAH [https://dhlab-basel.github.io/Salsah/].
Using the Knora API and Knora-ui [https://github.com/dhlab-basel/Knora-ui], a set of
reusable user-interface components, you can also create your own VRE or project-specific
web site.

Knora Ontologies

@@toc { depth=2 }

@@@ index

	Introduction

	The Knora Base Ontology

	The SALSAH GUI Ontology

@@@

The Knora ontologies provide a generic framework for describing humanities
research data, allowing data from different projects to be combined, augmented,
and reused.

Introduction

@@toc { depth=2 }

Resource Description Framework (RDF)

Knora uses a hierarchy of ontologies based on the Resource Description
Framework
(RDF [http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/]), RDF
Schema (RDFS [http://www.w3.org/TR/2014/REC-rdf-schema-20140225/]), and
the Web Ontology Language
(OWL [https://www.w3.org/TR/owl2-quick-reference/]). Both RDFS and OWL
are expressed in RDF. RDF expresses information as a set of statements
(called triples). A triple consists of a subject, a predicate, and an
object:

[image: Figure 1]Figure 1

The object may be either a literal value (such as a name or number) or
another subject. Thus it is possible to create complex graphs that
connect many subjects, like this:

[image: Figure 2]Figure 2

In RDF, each subject and predicate has a unique, URL-like identifier
called an Internationalized Resource Identifier
(@extrefIRI). Within a given project,
IRIs typically differ only in their last component (the “local part”),
which is often the fragment following a # character. Such IRIs share a
long “prefix”. In Turtle [http://www.w3.org/TR/turtle/] and similar
formats for writing RDF, a short prefix label can be defined to
represent the long prefix. Then an IRI can be written as a prefix label
and a local part, separated by a colon (:). For example, if the
“example” project’s long prefix is http://www.example.org/rdf#, and it
contains subjects with IRIs like http://www.example.org/rdf#book, we
can define the prefix label ex to represent the prefix label, and
write prefixed names for IRIs:

[image: Figure 3]Figure 3

Built-in Ontologies and User-Created Ontologies

To ensure the interoperability of data produced by different projects,
each project must describe its data model by creating one or more ontologies that
extend Knora’s built-in ontologies. The main built-in ontology in Knora
is @ref:knora-base.

Shared Ontologies

Knora does not normally allow a project to use classes or properties defined in
an ontology that belongs to another project. Each project must be free to change
its own ontologies, but this is not possible if they have been used in ontologies
or data created by other projects.

However, an ontology can be defined as shared, meaning that it can be used by
multiple projects, and that its creators will not change it in ways that could
affect other ontologies or data that are based on it. Specifically, in a shared
ontology, existing classes and properties cannot safely be changed, but new ones
can be added. (It is not even safe to add an optional cardinality to an existing
class, because this could cause subclasses to violate the rule that a class cannot
have a cardinality on property P as well as a cardinality on a subproperty of P;
see @ref:Restrictions on Classes.)

A standardisation process for shared ontologies is planned (issue @github#523).

For more details about shared ontologies, see
@ref:Shared Ontology IRIs.

The Knora Base Ontology

@@toc { depth=3 }

Overview

The Knora base ontology is the main built-in Knora ontology. Each
project that uses Knora must describe its data model by creating
ontologies that extend this ontology.

The Knora base ontology is identified by the IRI
http://www.knora.org/ontology/knora-base. In the Knora documentation
in general, it is identified by the prefix knora-base, but for
brevity, in this document, we use kb or omit the prefix entirely.

The Knora Data Model

The Knora data model is based on the observation that, in the
humanities, a value or literal is often itself structured and can be
highly complex. Moreover, a value may have its own metadata, such as its
creation date, information about permissions, and so on. Therefore, the
Knora base ontology describes structured value types that can store this
type of metadata. In the diagram below, a book (ex:book2) has a title
(identified by the predicate ex:title) and a publication date
(ex:pubdate), each of which has some metadata.

[image: Figure 1]Figure 1

Projects

In Knora, each item of data belongs to some particular project. Each
project using Knora must define a kb:knoraProject, which has these
properties (cardinalities are indicated in parentheses after each
property name):

projectShortname (1)

: A short name that can be used to identify the project in
configuration files and the like.

projectLongname (1)

: The full name of the project.

projectShortcode (1)

: A hexadecimal code that uniquely identifies the project. These
codes are assigned to projects by the DaSCH [http://dasch.swiss/].

projectDescription (1-n)

: A description of the project.

belongsToInstitution (0-1)

: The kb:Institution that the project belongs to.

Ontologies, resources, and valuesare associated with a project by means of the
kb:attachedToProject property, as described in @ref:Ontologies
and @ref:Properties of Resource). Users are associated with a project by
means of the kb:isInProject property, as described in
@ref:Users and Groups.

Ontologies

Each user-created ontology must be defined as an owl:Ontology with the
properties rdfs:label and kb:attachedToProject.

Resources

All the content produced by a project (e.g. digitised primary source
materials or research data) must be stored in objects that belong to
subclasses of kb:Resource, so that Knora can query and
update that content. Each project using the Knora base ontology must
define its own OWL classes, derived from kb:Resource, to represent the
types of data it deals with. A subclass of kb:Resource may
additionally be a subclass of any other class, e.g. an industry-standard
class such as foaf:Person; this can facilitate searches across
projects.

Resources have properties that point to different parts of the content
they contain. For example, a resource representing a book could have a
property called hasAuthor, pointing to the author of the book. There
are two possible kinds of content in a Knora resource: Knora values (see
@ref:Values) or links to other resources (see
@ref:Links Between Resources). Properties that point to Knora values
must be subproperties of kb:hasValue, and properties that point to
other resources must be subproperties of kb:hasLinkTo. Either of these
two types of properties may also be a subproperty of any other property,
e.g. an industry-standard property such as foaf:name; this can
facilitate searches across projects. Each property definition must
specify the types that its subjects and objects must belong to (see
@ref:Constraints on the Types of Property Subjects and Objects for details).

Each user-created resource class definition must use OWL cardinality
restrictions to specify the properties that resources of that class can
have (see @ref:OWL Cardinalities for details).

Resources are not versioned; only their values are versioned (see
@ref:Values).

Every resource is required to have an rdfs:label. The object of this
property is an xsd:string, rather than a Knora value; hence it is not
versioned. A user who has modify permission on a resource (see
@ref:Authorisation) can change its label.

A resource can be marked as deleted; Knora does this by
adding the predicate kb:isDeleted true to the resource. An optional
kb:deleteComment may be added to explain why the resource has been
marked as deleted. Deleted resources are normally hidden. They cannot be
undeleted, because even though resources are not versioned, it is
necessary to be able to find out when a resource was deleted. If
desired, a new resource can be created by copying data from a deleted
resource.

Properties of Resource

creationDate (1)

: The time when the resource was created.

attachedToUser (1)

: The user who owns the resource.

attachedToProject (1)

: The project that the resource is part of.

lastModificationDate (0-1)

: A timestamp indicating when the resource (or one of its values) was
last modified.

seqnum (0-1)

: The sequence number of the resource, if it is part of an ordered
group of resources, such as the pages in a book.

isDeleted (1)

: Indicates whether the resource has been deleted.

deleteDate (0-1)

: If the resource has been deleted, indicates when it was deleted.

deleteComment (0-1)

: If the resource has been deleted, indicates why it was deleted.

Resources can have properties that point to other resources; see
@ref:Links Between Resources. A resource grants permissions to groups
of users; see @ref:Authorisation.

Representations

It is not practical to store all data in RDF. In particular, RDF is not
a good storage medium for binary data such as images. Therefore, Knora
stores such data outside the triplestore, in ordinary files. A resource
can have metadata about a file attached to it. The technical term for such a
resource in Knora is a Representation. For each file, there is a
kb:FileValue in the triplestore containing metadata about the file
(see @ref:FileValue). Knora uses Sipi [https://github.com/dhlab-basel/Sipi]
to store files. The @ref:Knora APIs provide ways
to create file values using Knora and Sipi.

A resource that has a file value must belong to one of the subclasses of
kb:Representation. Its subclasses include:

StillImageRepresentation

: A representation containing a still image file.

MovingImageRepresentation

: A representation containing a video file.

AudioRepresentation

: A representation containing an audio file.

DDDrepresentation

: A representation containing a 3D image file.

TextRepresentation

: A representation containing a formatted text file, such as an XML file.

DocumentRepresentation

: A representation containing a document (such as a PDF file) that is
not a text file.

These classes can be used directly in data, but it is often better to make
subclasses of them, to include metadata about the files being stored.

The base class of all these classes is Representation, which is not intended to
be used directly. It has this property, which its subclasses override:

hasFileValue (1)

: Points to a file value.

There are two ways for a project to design classes for representations.
The simpler way is to create a resource class that represents a thing in
the world (such as ex:Painting) and also belongs to a subclass of
Representation. This is adequate if the class can have only one type
of file attached to it. For example, if paintings are represented only
by still images, ex:Painting could be a subclass of
StillImageRepresentation. This is the only approach supported in
@ref:Knora API v1.

The more flexible approach, which is supported by @ref:Knora API
v2, is for each ex:Painting to link (using
kb:hasRepresentation or a subproperty) to other resources containing files
that represent the painting. Each of these other resources can extend a
different subclass of Representation. For example, a painting could have a
StillImageRepresentation as well as a DDDrepresentation.

Standard Resource Classes

In general, each project using Knora must define its own subclasses of
kb:Resource. However, the Knora base ontology provides some standard
subclasses of kb:Resource, which are intended to be used by any
project:

Region

: Represents a region of a Representation (see
@ref:Representations).

Annotation

: Represents an annotation of a resource. The hasComment property
points to the text of the annotation, represented as a
kb:TextValue.

LinkObj

: Represents a link that connects two or more resources. A LinkObj
has a hasLinkTo property pointing to each resource that it
connects, as well as a hasLinkToValue property pointing to a
reification of each of these direct links (see
@ref:Links Between Resources). A LinkObj is more complex (and
hence less convenient and readable) than a simple direct link, but
it has the advantage that it can be annotated using an Annotation.
For improved readability, a project can make its own subclasses of
LinkObj with specific meanings.

Values

The Knora base ontology defines a set of OWL classes that are derived
from kb:Value and represent different types of structured values found
in humanities data. This set of classes may not be extended by
user-created ontologies.

A value is always part of one particular resource, which points to it
using some property derived from hasValue. For example, a
user-created ontology could specify a Book class with a property
hasSummary (derived from hasValue), and that property could have a
knora-base:objectClassConstraint of TextValue. This would mean that
the summary of each book is represented as a TextValue.

Knora values are versioned. Existing values are not modified. Instead, a
new version of an existing value is created. The new version is linked
to the old version via the previousValue property.

Since each value version has a different IRI, there is no IRI that can
be used to cite the value, such that it will always refer to the latest
version of the value. Therefore, the latest version of each value has
a separate UUID, as the object of the property valueHasUUID. When
a new version of the value is created, this UUID is moved to the new
version. This makes it possible to cite the latest version of a value
by searching for the UUID.

“Deleting” a value means marking it with kb:isDeleted. An optional
kb:deleteComment may be added to explain why the value has been marked
as deleted. Deleted values are normally hidden.

Most types of values are marked as deleted without creating a new
version of the value. However, link values must be treated as a special
case. Before a LinkValue can be marked as deleted, its reference count
must be decremented to 0. Therefore, a new version of the LinkValue is
made, with a reference count of 0, and it is this new version that is
marked as deleted.

To simplify the enforcement of ontology constraints, and for consistency
with resource updates, no new versions of a deleted value can be made;
it is not possible to undelete. Instead, if desired, a new value can be
created by copying data from a deleted value.

Properties of Value

valueCreationDate (1)

: The date and time when the value was created.

attachedToUser (1)

: The user who owns the value.

attachedToProject (0-1)

: The project that the value is part of. If not specified, defaults to
the project of the containing resource.

valueHasString (1)

: A human-readable string representation of the value’s contents,
which is available to Knora’s full-text search index.

valueHasOrder (0-1)

: A resource may have several properties of the same type with
different values (which will be of the same class), and it may be
necessary to indicate an order in which these values occur. For
example, a book may have several authors which should appear in a
defined order. Hence, valueHasOrder, when present, points to an
integer literal indicating the order of a given value relative to
the other values of the same property. These integers will not
necessarily start at any particular number, and will not necessarily
be consecutive.

previousValue (0-1)

: The previous version of the value.

valueHasUUID (0-1)

: The UUID that refers to all versions of the value. Only the latest
version of the value has this property.

isDeleted (1)

: Indicates whether the value has been deleted.

deleteDate (0-1)

: If the value has been deleted, indicates when it was deleted.

deleteComment (0-1)

: If the value has been deleted, indicates why it was deleted.

Each Knora value can grant permissions (see
@ref:Authorisation).

Subclasses of Value

TextValue

Represents text, possibly including markup. The text is the object of
the valueHasString property. A line break is represented as a Unicode
line feed character (U+000A). The non-printing Unicode character
INFORMATION SEPARATOR TWO (U+001E) can be used to separate words that
are separated only by standoff markup (see below), so they are
recognised as separate in a full-text search index.

Markup is stored using this property:

valueHasStandoff (0-n)

: Points to a standoff markup tag. See
@ref:Text with Standoff Markup.

valueHasMapping (0-1)

: Points to the mapping used to create the standoff markup and to
convert it back to the original XML. See
@ref:Mapping to Create Standoff From XML.

A text value can have a specified language:

valueHasLanguage (0-1)
: is an ISO 639-1 code as string specifying the language of the text.

DateValue

Humanities data includes many different types of dates. In Knora, a date
has a specified calendar, and is always represented as a period with
start and end points (which may be equal), each of which has a precision
(DAY, MONTH, or YEAR). An optional ERA indicator term (BCE,
CE, or BC, AD) can be added to the date, when no era is provided
the default era AD will be considered. Internally, the start and end
points are stored as two Julian Day Numbers. This calendar-independent
representation makes it possible to compare and search for dates
regardless of the calendar in which they were entered. Properties:

valueHasCalendar (1)

: The name of the calendar in which the date should be displayed.
Currently GREGORIAN and JULIAN are supported.

valueHasStartJDN (1)

: The Julian Day Number of the start of the period (an xsd:integer).

valueHasStartPrecision (1)

: The precision of the start of the period.

valueHasEndJDN (1)

: The Julian Day Number of the end of the period (an xsd:integer).

valueHasEndPrecision (1)

: The precision of the end of the period.

IntValue

Represents an integer. Property:

valueHasInteger (1)

: An xsd:integer.

ColorValue

valueHasColor (1)

: A string representing a color. The string encodes a color as
hexadecimal RGB values, e.g. “#FF0000”.

DecimalValue

Represents an arbitrary-precision decimal number. Property:

valueHasDecimal (1)

: An xsd:decimal.

UriValue

Represents a non-Knora URI. Property:

valueHasUri (1)

: An xsd:anyURI.

BooleanValue

Represents a boolean value. Property:

valueHasBoolean (1)

: An xsd:boolean.

GeomValue

Represents a geometrical object as a JSON string, using normalized
coordinates. Property:

valueHasGeometry (1)

: A JSON string.

GeonameValue

Represents a geolocation, using the identifiers found at
GeoNames [http://geonames.org]. Property:

valueHasGeonameCode (1)

: the identifier of a geographical feature from
GeoNames [http://geonames.org], represented as an xsd:string.

IntervalValue

Represents a time interval, with precise start and end times on a
timeline, e.g. relative to the beginning of an audio or video file.
Properties:

valueHasIntervalStart (1)

: An xsd:decimal representing the start of the interval in seconds.

valueHasIntervalEnd (1)

: An xsd:decimal representing the end of the interval in seconds.

ListValue

Projects often need to define lists or hierarchies of categories that
can be assigned to many different resources. Then, for example, a user
interface can provide a drop-down menu to allow the user to assign a
category to a resource. The ListValue class provides a way to
represent these sorts of data structures. It can represent either a flat
list or a tree.

A ListValue has this property:

valueHasListNode (1)

: Points to a ListNode.

Each ListNode can have the following properties:

isRootNode (0-1)

: Set to true if this is the root node.

hasSubListNode (0-n)

: Points to the node’s child nodes, if any.

hasRootNode (0-1)

: Points to the root node of the list (absent if isRootNode is
true).

listNodePosition (0-1)

: An integer indicating the node’s position in the list of its
siblings (absent if isRootNode is true).

listNodeName (0-1)

: The node’s human-readable name (absent if isRootNode is true).

FileValue

Knora stores certain kinds of data outside the triplestore, in files
(see @ref:Representations). Each digital object that
is stored outside the triplestore has associated metadata, which is
stored in the triplestore in a kb:FileValue. The base class
FileValue, which is not intended to be used directly, has these
properties:

internalFilename (1)

: The name of the file as stored by Knora.

internalMimeType (1)

: The MIME type of the file as stored by Knora.

originalFilename (0-1)

: The original name of the file when it was uploaded to the Knora API
server.

originalMimeType (0-1)

: The original MIME type of the file when it was uploaded to the Knora
API server.

isPreview (0-1)

: A boolean indicating whether the file is a preview, i.e. a small
image representing the contents of the file. A preview is always a
StillImageFileValue, regardless of the type of the enclosing
Representation.

The subclasses of FileValue, which are intended to be used directly in
data, include:

StillImageFileValue

: Contains metadata about a still image file.

MovingImageFileValue

: Contains metadata about a video file.

AudioFileValue

: Contains metadata about an audio file.

DDDFileValue

: Contains metadata about a 3D image file.

TextFileValue

: Contains metadata about a text file.

DocumentFileValue

: Contains metadata about a document (such as PDF) that is not a text
file.

Each of these classes contains properties that are specific to the type
of file it describes. For example, still image files have dimensions,
video files have frame rates, and so on.

FileValue objects are versioned like other values, and the actual
files stored by Knora are also versioned. Version 1 of the Knora API
does not provide a way to retrieve a previous version of a file, but
this feature will be added in a subsequent version of the API.

LinkValue

A LinkValue is an RDF “reification” containing metadata about a link
between two resources. It is therefore a subclass of rdf:Statement as
well as of Value. It has these properties:

rdf:subject (1)

: The resource that is the source of the link.

rdf:predicate (1)

: The link property.

rdf:object (1)

: The resource that is the target of the link.

valueHasRefCount (1)

: The reference count of the link. This is meaningful when the
LinkValue describes resource references in Standoff text markup
(see @ref:StandoffLinkTag). Otherwise, the
reference count will always be 1 (if the link exists) or 0 (if it
has been deleted).

For details about how links are created in Knora, see
@ref:Links Between Resources.

ExternalResValue

Represents a resource that is not stored in the RDF triplestore managed
by Knora, but instead resides in an external repository
managed by some other software. The ExternalResValue contains the
information that Knora needs in order to access the
resource, assuming that a suitable gateway plugin is installed.

extResAccessInfo (1)

: The location of the repository containing the external resource
(e.g. its URL).

extResId (1)

: The repository-specific ID of the external resource.

extResProvider (1)

: The name of the external provider of the resource.

Links Between Resources

A link between two resources is expressed, first of all, as a triple, in
which the subject is the resource that is the source of the link, the
predicate is a “link property” (a subproperty of kb:hasLinkTo), and
the object is the resource that is the target of the link.

It is also useful to store metadata about links. For example, Knora
needs to know who owns the link, who has permission to modify it, when
it was created, and so on. Such metadata cannot simply describe the link
property, because then it would refer to that property in general, not
to any particular instance in which that property is used to connect two
particular resources. To attach metadata to a specific link in RDF, it
is necessary to create an RDF “reification”. A reification makes
statements about a particular triple (subject, predicate, object), in
this case the triple that expresses the link between the resources.
Knora uses reifications of type kb:LinkValue (described in
@ref:LinkValue to store metadata about links.

For example, suppose a project describes paintings that belong to
collections. The project can define an ontology as follows (expressed
here in Turtle [http://www.w3.org/TR/turtle/] format, and simplified for
the purposes of illustration):

@prefix kb <http://www.knora.org/ontology/knora-base#> .
@prefix : <http://www.knora.org/ontology/paintings#> .

:Painting rdf:type owl:Class ;
 rdfs:subClassOf kb:Resource ,
 [rdf:type owl:Restriction ;
 owl:onProperty :hasArtist ;
 owl:cardinality 1] ,
 [rdf:type owl:Restriction ;
 owl:onProperty :hasTitle ;
 owl:cardinality 1] ;
 [rdf:type owl:Restriction ;
 owl:onProperty :isInCollection ;
 owl:minCardinality 1] ;
 [rdf:type owl:Restriction ;
 owl:onProperty :isInCollectionValue ;
 owl:minCardinality 1] .

:Collection rdf:type owl:Class ;
 rdfs:subClassOf kb:Resource ,
 [rdf:type owl:Restriction ;
 owl:onProperty :hasCollectionName ;
 owl:cardinality 1] .

:hasArtist rdf:type owl:ObjectProperty ;
 rdfs:label "Name of artist" ;
 kb:subjectClassConstraint :Painting ;
 kb:objectClassConstraint kb:TextValue .

:hasTitle rdf:type owl:ObjectProperty ;
 rdfs:label "Title of painting"
 kb:subjectClassConstraint :Painting ;
 kb:objectClassConstraint kb:TextValue .

:hasCollectionName rdf:type owl:ObjectProperty ;
 rdfs:label "Name of collection" ;
 kb:subjectClassConstraint :Collection ;
 kb:objectClassConstraint kb:TextValue .

To link the paintings to the collection, we must add a “link property”
to the ontology. In this case, the link property will point from a
painting to the collection it belongs to. Every link property must be a
subproperty of kb:hasLinkTo.

:isInCollection rdf:type owl:ObjectProperty ;
 rdfs:subPropertyOf kb:hasLinkTo ;
 kb:subjectClassConstraint :Painting ;
 kb:objectClassConstraint :Collection .

We must then add a “link value property”, which will point from a
painting to a kb:LinkValue (described in
@ref:LinkValue), which will contain metadata about
the link between the property and the collection. In particular, the
link value specifies the creator of the link, the date when it was
created, and the permissions that determine who can view or modify it.
The name of the link value property is constructed using a simple naming
convention: the word Value is appended to the name of the link
property. In this case, since our link property is called
:isInCollection, the link value property must be called
:isInCollectionValue. Every link value property must be a subproperty
of kb:hasLinkToValue.

:isInCollectionValue rdf:type owl:ObjectProperty ;
 rdfs:subPropertyOf kb:hasLinkToValue ;
 kb:subjectClassConstraint :Painting ;
 kb:objectClassConstraint kb:LinkValue .

Given this ontology, we can create some RDF data describing a painting
and a collection:

@prefix paintings <http://www.knora.org/ontology/paintings#> .
@prefix data <http://www.knora.org/ontology/paintings/data#> .

data:dali_4587 rdf:type paintings:Painting ;
 paintings:hasTitle data:value_A ;
 paintings:hasArtist data:value_B .

data:value_A rdf:type kb:TextValue ;
 kb:valueHasString "The Persistence of Memory" .

data:value_B rdf:type kb:TextValue ;
 kb:valueHasString "Salvador Dali" .

data:pompidou rdf:type paintings:Collection ;
 paintings:hasCollectionName data:value_C .

data:value_C rdf:type kb:TextValue ;
 kb:valueHasString "Centre Pompidou, Paris" .

We can then state that the painting is in the collection:

data:dali_4587 paintings:isInCollection data:pompidou ;
 paintings:isinCollectionValue data:value_D .

data:value_D rdf:type kb:LinkValue ;
 rdf:subject data:dali_4587 ;
 rdf:predicate paintings:isInCollection ;
 rdf:object data:pompidou ;
 kb:valueHasRefCount 1 .

This creates a link (paintings:isInCollection) between the painting
and the collection, along with a reification containing metadata about
the link. We can visualise the result as the following graph:

[image: Figure 2]Figure 2

Knora allows a user to see a link if the requesting user
has permission to see the source and target resources as well as the
kb:LinkValue.

Text with Standoff Markup

Knora is designed to be able to store text with markup, which can
indicate formatting and structure, as well as the complex observations
involved in transcribing handwritten manuscripts. One popular way of
representing text in the humanities is to encode it in XML using the
Text Encoding Initiative
(TEI [http://www.tei-c.org/release/doc/tei-p5-doc/en/html/index.html])
guidelines. In Knora, a TEI/XML document can be stored as a file
with attached metadata, but this is not recommended, because it does not
allow Knora to perform searches across multiple documents.

The recommended way to store text with markup in Knora is to use
Knora’s built-in support for “standoff” markup, which is stored
separately from the text. This has some advantages over embedded markup
such as XML. While XML requires markup to have a hierarchical
structure, and does not allow overlapping tags, standoff nodes do not
have these limitations (see Using Standoff Properties for Marking-up Historical Documents in the Humanities [http://ecdosis.net/papers/schmidt.d.2016.pdf]). A standoff tag can be attached to any substring in the text by giving its start and end positions. Unlike in corpus linguistics, we
do not use any tokenisation resulting in a form of predefined segmentation, which would limit the user’s ability to freely annotate any ranges in the text.

For example, suppose we have the following text:

This sentence has overlapping visual attributes.

This would require just two standoff tags: `(italic, start=5, end=29)`
and `(bold, start=14, end=36)`.Moreover, standoff makes it possible to mark up the same text in
different, possibly incompatible ways, allowing for different
interpretations without making redundant copies of the text. In the
Knora base ontology, any text value can have standoff tags.

By representing standoff as RDF triples, Knora makes markup searchable
across multiple text documents in a repository. For example, if a
repository contains documents in which references to persons are
indicated in standoff, it is straightforward to find all the documents
mentioning a particular person. Knora’s standoff support is intended to
make it possible to convert documents with embedded, hierarchical
markup, such as TEI/XML, into RDF standoff and back again, with no data
loss, thus bringing the benefits of RDF to existing TEI-encoded
documents.

In the Knora base ontology, a TextValue can have one or more standoff
tags. Each standoff tag indicates the start and end positions of a
substring in the text that has a particular attribute. The OWL class
kb:StandoffTag, which is the base class of all standoff node classes,
has these properties:

standoffTagHasStart (1)

: The index of the first character in the text that has the attribute.

standoffTagHasEnd (1)

: The index of the last character in the text that has the attribute,
plus 1.

standoffTagHasUUID (1)

: A UUID identifying this instance and those corresponding to it in
later versions of the TextValue it belongs to. The UUID is a means
to maintain a reference to a particular range of a text also when
new versions are made and standoff tag IRIs change.

standoffTagHasOriginalXMLID (0-1)

: The original id of the XML element that the standoff tag represents,
if any.

standoffTagHasStartIndex (1)

: The start index of the standoff tag. Start indexes are numbered from
0 within the context of a particular text. When several standoff
tags share the same start position, they can be nested correctly
with this information when transforming them to XML.

standoffTagHasEndIndex (1)

: The end index of the standoff tag. Start indexes are numbered from 0
within the context of a particular text. When several standoff tags
share the same end position, they can be nested correctly with this
information when transforming them to XML.

standoffTagHasStartParent (0-1)

: Points to the parent standoff tag. This corresponds to the original
nesting of tags in XML. If a standoff tag has no parent, it
represents the XML root element. If the original XML element is a
CLIX tag, it represents the start of a virtual (non syntactical)
hierarchy.

standoffTagHasEndParent (0-1)

: Points to the parent standoff tag if the original XML element is a
CLIX tag and represents the end of a virtual (non syntactical)
hierarchy.

The StandoffTag class is not used directly in RDF data; instead, its
subclasses are used. A few subclasses are currently provided in
standoff-onto.ttl, and more will be added to support TEI semantics.
Projects are able to define their own custom standoff tag classes
(direct subclasses of StandoffTag or one of the standoff data type
classes or subclasses of one of the standoff classes defined in
standoff-onto.ttl).

Subclasses of StandoffTag

Standoff Data Type Tags

Associates data in some Knora value type with a substring in a text.
Standoff data type tags are subclasses of ValueBase classes.

	StandoffLinkTag Indicates that a substring refers to another kb:Resource.
See @ref:StandoffLinkTag.

	StandoffInternalReferenceTag Indicates that a substring refers to another
standoff tag in the same text value. See @ref:Internal Links in a TextValue.

	StandoffUriTag Indicates that a substring is associated with a URI, which
is stored in the same form that is used for kb:UriValue. See @ref:UriValue.

	StandoffDateTag Indicates that a substring represents a date, which is stored
in the same form that is used for kb:DateValue. See @ref:DateValue.

	StandoffColorTag Indicates that a substring represents a color, which is stored
in the same form that is used for kb:ColorValue. See @ref:ColorValue.

	StandoffIntegerTag Indicates that a substring represents an integer, which is
stored in the same form that is used for kb:IntegerValue. See @ref:IntValue.

	StandoffDecimalTag Indicates that a substring represents a number with fractions,
which is stored in the same form that is used for kb:DecimalValue. See @ref:DecimalValue.

	StandoffIntervalTag Indicates that a substring represents an interval, which
is stored in the same form that is used for kb:IntervalValue. See @ref:IntervalValue.

	StandoffBooleanTag Indicates that a substring represents a Boolean, which is stored
in the same form that is used for kb:BooleanValue. See @ref:BooleanValue.

StandoffLinkTag

A StandoffLinkTag Indicates that a substring is associated with a
Knora resource. For example, if a repository contains resources
representing persons, a text could be marked up so that each time a
person’s name is mentioned, a StandoffLinkTag connects the name to the
Knora resource describing that person. Property:

standoffTagHasLink (1)

: The IRI of the resource that is referred to.

One of the design goals of the Knora ontology is to make it easy and
efficient to find out which resources contain references to a given
resource. Direct links are easier and more efficient to query than
indirect links. Therefore, when a text value contains a resource
reference in its standoff nodes, Knora automatically
creates a direct link between the containing resource and the target
resource, along with an RDF reification (a kb:LinkValue) describing
the link, as discussed in @ref:Links Between Resources. In this case,
the link property is always kb:hasStandoffLinkTo, and the link value
property (which points to the LinkValue) is always
kb:hasStandoffLinkToValue.

Knora automatically updates direct links and reifications
for standoff resource references when text values are updated. To do
this, it keeps track of the number of text values in each resource that
contain at least one standoff reference to a given target resource. It
stores this number as the reference count of the LinkValue (see
@ref:LinkValue) describing the direct link. Each
time this number changes, it makes a new version of the LinkValue,
with an updated reference count. When the reference count reaches zero,
it removes the direct link and makes a new version of the LinkValue,
marked with kb:isDeleted.

For example, if data:R1 is a resource with a text value in which the
resource data:R2 is referenced, the repository could contain the
following triples:

data:R1 ex:hasComment data:V1 .

data:V1 rdf:type kb:TextValue ;
 kb:valueHasString "This link is internal." ;
 kb:valueHasStandoff data:SO1 .

data:SO1 rdf:type kb:StandoffLinkTag ;
 kb:standoffTagHasStart: 5 ;
 kb:standoffTagHasEnd: 9 ;
 kb:standoffTagHasLink data:R2 .

data:R1 kb:hasStandoffLinkTo data:R2 .
data:R1 kb:hasStandoffLinkToValue data:LV1 .

data:LV1 rdf:type kb:LinkValue ;
 rdf:subject data:R1 ;
 rdf:predicate kb:hasStandoffLinkTo ;
 rdf:object data:R2 ;
 kb:valueHasRefCount 1 .

The result can be visualized like this:

[image: Figure 3]Figure 3

Link values created automatically for resource references in standoff
are visible to all users, and the creator of these link values is always
kb:SystemUser (see @ref:Users and Groups). The
Knora API server allows a user to see a standoff link if the user has
permission to see the source and target resources.

Internal Links in a TextValue

Internal links in a TextValue can be represented using the data type
standoff class StandoffInternalReferenceTag or a subclass of it. It
has the following property:

standoffTagHasInternalReference (1)

: Points to a StandoffTag that belongs to the same TextValue. It
has an objectClassConstraint of StandoffTag.

For links to a kb:Resource, see @ref:StandoffLinkTag.

Mapping to Create Standoff From XML

A mapping allows for the conversion of an XML document to RDF-standoff
and back. A mapping defines one-to-one relations between XML elements
(with or without a class) and attributes and standoff classes and
properties (see @ref:XML to Standoff Mapping).

A mapping is represented by a kb:XMLToStandoffMapping which contains
one or more kb:MappingElement. A kb:MappingElement maps an XML
element (including attributes) to a standoff class and standoff
properties. It has the following properties:

mappingHasXMLTagname (1)

: The name of the XML element that is mapped to a standoff class.

mappingHasXMLNamespace (1)

: The XML namespace of the XML element that is mapped to a standoff
class. If no namespace is given, noNamespace is used.

mappingHasXMLClass (1)

: The name of the class of the XML element. If it has no class,
noClass is used.

mappingHasStandoffClass (1)

: The standoff class the XML element is mapped to.

mappingHasXMLAttribute (0-n)

: Maps XML attributes to standoff properties using
MappingXMLAttribute. See below.

mappingHasStandoffDataTypeClass (0-1)

: Indicates the standoff data type class of the standoff class the XML
element is mapped to.

mappingElementRequiresSeparator (1)

: Indicates if there should be an invisible word separator inserted
after the XML element in the RDF-standoff representation. Once the
markup is stripped, text segments that belonged to different
elements may be concatenated.

A MappingXMLAttribute has the following properties:

mappingHasXMLAttributename

: The name of the XML attribute that is mapped to a standoff property.

mappingHasXMLNamespace

: The namespace of the XML attribute that is mapped to a standoff
property. If no namespace is given, noNamespace is used.

mappingHasStandoffProperty

: The standoff property the XML attribute is mapped to.

Knora includes a standard mapping used by the SALSAH GUI. It has the IRI
http://rdfh.ch/standoff/mappings/StandardMapping and defines mappings
for a few elements used to write texts with simple markup.

Standoff in Digital Editions

Knora’s standoff is designed to make it possible to convert XML
documents to standoff and back. One application for this feature is an
editing workflow in which an editor works in an XML editor, and the
resulting XML documents are converted to standoff and stored in Knora,
where they can be searched and annotated.

If an editor wants to correct text that has been imported from XML into
standoff, the text can be exported as XML, edited, and imported again.
To preserve annotations on standoff tags across edits, each tag can
automatically be given a UUID. In a future version of the Knora base
ontology, it will be possible to create annotations that point to UUIDs
rather than to IRIs. When a text is exported to XML, the UUIDs can be
included in the XML. When the edited XML is imported again, it can be
converted to new standoff tags with the same UUIDs. Annotations that
applied to standoff tags in the previous version of the text will
therefore also apply to equivalent tags in the new version.

When text is converted from XML into standoff, tags are also given
indexes, which are numbered from 0 within the context of a particular
text. This makes it possible to order tags that share the same position,
and to preserve the hierarchy of the original XML document. An ordinary,
hierarchical XML tag is converted to a standoff tag that has one index,
as well as the index of its parent tag, if any. The Knora base ontology
also supports non-hierarchical markup such as
CLIX [http://conferences.idealliance.org/extreme/html/2004/DeRose01/EML2004DeRose01.html#t6],
which enables overlapping markup to be represented in XML. When
non-hierarchical markup is converted to standoff, both the start
position and the end position of the standoff tag have indexes and
parent indexes.

To support these features, a standoff tag can have these additional
properties:

standoffTagHasStartIndex (0-1)

: The index of the start position.

standoffTagHasEndIndex (0-1)

: The index of the end position, if this is a non-hierarchical tag.

standoffTagHasStartParent (0-1)

: The IRI of the tag, if any, that contains the start position.

standoffTagHasEndParent (0-1)

: The IRI of the tag, if any, that contains the end position, if this
is a non-hierarchical tag.

standoffTagHasUUID (0-1)

: A UUID that can be used to annotate a standoff tag that may be
present in different versions of a text, or in different layers of a
text (such as a diplomatic transcription and an edited critical
text).

Querying Standoff in SPARQL

A future version of Knora will provide an API for
querying standoff markup. In the meantime, it is possible to query it
directly in SPARQL. For example, here is a SPARQL query (using RDFS
inference) that finds all the text values texts that have a standoff
date tag referring to Christmas Eve 2016, contained in a
StandoffItalicTag:

PREFIX knora-base: <http://www.knora.org/ontology/knora-base#>
PREFIX standoff: <http://www.knora.org/ontology/standoff#>

select * where {
 ?standoffTag a knora-base:StandoffDateTag .

 ?standoffTag knora-base:valueHasStartJDN ?dateStart .
 ?standoffTag knora-base:valueHasEndJDN ?dateEnd .

 FILTER (2457747 <= ?dateEnd && 2457747 >= ?dateStart)

 ?standoffTag knora-base:standoffTagHasStartParent ?parent .
 ?parent a standoff:StandoffItalicTag .

 ?textValue knora-base:valueHasStandoff ?standoffTag .
 ?textValue knora-base:valueHasString ?string .

 ?standoffTag knora-base:standoffTagHasStart ?startPos .
 ?standoffTag knora-base:standoffTagHasEnd ?endPos .
}

Authorisation

Users and Groups

Each Knora user is represented by an object belonging to the class
kb:User, which is a subclass of foaf:Person, and has the following
properties:

userid (1)

: A unique identifier that the user must provide when logging in.

password (1)

: A cryptographic hash of the user’s password.

email (0-n)

: Email addresses belonging to the user.

isInProject (0-n)

: Projects that the user is a member of.

isInGroup (0-n)

: user-created groups that the user is a member of.

foaf:familyName (1)

: The user’s family name.

foaf:givenName (1)

: The user’s given name.

Knora’s concept of access control is that an object (a resource or
value) can grant permissions to groups of users (but not to individual
users). There are several built-in groups:

knora-admin:UnknownUser

: Any user who has not logged into Knora is
automatically assigned to this group.

knora-admin:KnownUser

: Any user who has logged into Knora is automatically
assigned to this group.

knora-admin:ProjectMember

: When checking a user’s permissions on an object, the user is
automatically assigned to this group if she is a member of the
project that the object belongs to.

knora-admin:Creator

: When checking a user’s permissions on an object, the user is
automatically assigned to this group if he is the creator of the
object.

knora-admin:ProjectAdmin

: When checking a user’s permissions on an object, the user is
automatically assigned to this group if she is an administrator of the
project that the object belongs to.

knora-admin:SystemAdmin

: The group of Knora system administrators.

A user-created ontology can define additional groups, which must
belong to the OWL class knora-admin:UserGroup.

There is one built-in knora-admin:SystemUser, which is the creator of link values
created automatically for resource references in standoff markup (see
@ref:StandoffLinkTag).

Permissions

Each resource or value can grant certain permissions to specified
user groups. These permissions are represented as the object of the
predicate kb:hasPermissions, which is required on every kb:Resource
and on the current version of every kb:Value. The permissions
attached to the current version of a value also apply to previous
versions of the value. Value versions other than the current one
do not have this predicate.

The following permissions can be granted:

	Restricted view permission (RV) Allows a restricted view of the
object, e.g. a view of an image with a watermark.

	View permission (V) Allows an unrestricted view of the object.
Having view permission on a resource only affects the user’s ability
to view information about the resource other than its values. To
view a value, she must have view permission on the value itself.

	Modify permission (M) For values, this permission allows a new
version of a value to be created. For resources, this allows the
user to create a new value (as opposed to a new version of an
existing value), or to change information about the resource other
than its values. When he wants to make a new version of a value, his
permissions on the containing resource are not relevant. However,
when he wants to change the target of a link, the old link must be
deleted and a new one created, so he needs modify permission on the
resource.

	Delete permission (D) Allows the item to be marked as deleted.

	Change rights permission (CR) Allows the permissions granted by
the object to be changed.

Each permission in the above list implies all lower-numbered
permissions. A user’s permission level on a particular object is
calculated in the following way:

	Make a list of the groups that the user belongs to, including
Creator and/or ProjectMember if applicable.

	Make a list of the permissions that she can obtain on the object, by
iterating over the permissions that the object grants. For each
permission, if she is in the specified group, add the specified
permission to the list of permissions she can obtain.

	From the resulting list, select the highest-level permission.

	If the result is that she would have no permissions, give her
whatever permission UnknownUser would have.

To view a link between resources, a user needs permission to view the
source and target resources. He also needs permission to view the
LinkValue representing the link, unless the link property is
hasStandoffLinkTo (see @ref:StandoffLinkTag).

The format of the object of kb:hasPermissions is as follows:

	Each permission is represented by the one-letter or two-letter
abbreviation given above.

	Each permission abbreviation is followed by a space, then a
comma-separated list of groups that the permission is granted to.

	The IRIs of built-in groups are shortened using the knora-admin
prefix.

	Multiple permissions are separated by a vertical bar (|).

For example, if an object grants view permission to unknown and known
users, and modify permission to project members, the resulting
permission literal would be:

V knora-admin:UnknownUser,knora-admin:KnownUser|M knora-admin:ProjectMember

Consistency Checking

Knora tries to enforce repository consistency by checking constraints
that are specified in the Knora base ontology and in user-created
ontologies. Three types of consistency rules are enforced:

	Cardinalities in OWL class definitions must be satisfied.

	Constraints on the types of the subjects and objects of OWL object
properties must be satisfied.

	A datatype property may not have an empty string as an object.

The implementation of consistency checking is partly
triplestore-dependent; Knora may be able to provide stricter checks with
some triplestores than with others.

OWL Cardinalities

As noted in @ref:Resources, each subclass of
Resource must use OWL cardinality restrictions to specify the
properties it can have. More specifically, a resource is allowed to have
a property that is a subproperty of kb:hasValue or kb:hasLinkTo only
if the resource’s class has some cardinality for that property.
Similarly, a value is allowed to have a subproperty of kb:valueHas
only if the value’s class has some cardinality for that property.

Knora supports, and attempts to enforce, the following cardinality
constraints:

owl:cardinality 1

: A resource of this class must have exactly one instance of the
specified property.

owl:minCardinality 1

: A resource of this class must have at least one instance of the
specified property.

owl:maxCardinality 1

: A resource of this class may have zero or one instance of the
specified property.

owl:minCardinality 0

: A resource of this class may have zero or more instances of the
specified property.

Knora requires cardinalities to be defined using blank nodes, as in the
following example from knora-base:

:Representation rdf:type owl:Class ;
 rdfs:subClassOf :Resource ,
 [rdf:type owl:Restriction ;
 owl:onProperty :hasFileValue ;
 owl:minCardinality "1"^^xsd:nonNegativeInteger] .

:StillImageRepresentation rdf:type owl:Class ;
 rdfs:subClassOf :Representation ,
 [rdf:type owl:Restriction ;
 owl:onProperty :hasStillImageFileValue ;
 owl:minCardinality "1"^^xsd:nonNegativeInteger] .

The cardinality of a link property must be the same as the cardinality
of the corresponding link value property.

Each owl:Restriction may have the predicate salsah-gui:guiOrder to
indicate the order in which properties should be displayed in a GUI
(see @ref:The SALSAH GUI Ontology).

A resource class inherits cardinalities from its superclasses. This
follows from the rules of
RDFS [http://www.w3.org/TR/2014/REC-rdf-schema-20140225/] inference.
Also, in Knora, cardinalities in the subclass can override cardinalities
that would otherwise be inherited from the superclass. Specifically, if
a superclass has a cardinality on a property P, and a subclass has a
cardinality on a subproperty of P, the subclass’s cardinality overrides
the superclass’s cardinality. In the example above,
hasStillImageFileValue is a subproperty of hasFileValue. Therefore,
the cardinality on hasStillImageFileValue overrides (i.e. replaces)
the one on hasFileValue.

Note that, unlike cardinalities, predicates of properties are not
inherited. If :foo rdfs:subPropertyOf :bar, this does not mean that
:foo inherits anything from :bar. Any predicates of :foo that are
also needed by :bar must be defined explicitly on :bar. This design
decision was made because property predicate inheritance is not provided
by RDFS inference, and would make it more difficult to check the
correctness of ontologies, while providing little practical benefit.

For more information about OWL cardinalities, see the OWL 2
Primer [http://www.w3.org/TR/2012/REC-owl2-primer-20121211/].

Constraints on the Types of Property Subjects and Objects

When a user-created ontology defines a property, it must indicate
the types that are allowed as objects (and, if possible, as subjects) of
the property. This is done using the following Knora-specific
properties:

subjectClassConstraint

: Specifies the class that subjects of the property must belong to.
This constraint is recommended but not required. Knora will attempt
to enforce this constraint.

objectClassConstraint

: If the property is an object property, specifies the class that
objects of the property must belong to. Every subproperty of
kb:hasValue or a kb:hasLinkTo (i.e. every property of a resource
that points to a kb:Value or to another resource) is required to
have this constraint, because Knora relies on it to
know what type of object to expect for the property. Knora will
attempt to enforce this constraint.

objectDatatypeConstraint

: If the property is a datatype property, specifies the type of
literals that can be objects of the property. Knora will not attempt
to enforce this constraint, but it is useful for documentation
purposes.

Note that it is possible for a subproperty to have a more restrictive
contraint than its base property, by specifing a subject or object class
that is a subclass of the one specified in the base property. However,
it is not possible for the subproperty to make the base property’s
constraint less restrictive.

See also @ref:Why doesn’t Knora use rdfs:domain and rdfs:range for consistency checking?

Consistency Constraint Example

A user-created ontology could define consistency constraints as in
this simplified example:

:book rdf:type owl:Class ;
 rdfs:subClassOf knora-base:Resource ,
 [rdf:type owl:Restriction ;
 owl:onProperty :hasTitle ;
 owl:cardinality "1"^^xsd:nonNegativeInteger] ,
 [rdf:type owl:Restriction ;
 owl:onProperty :hasAuthor ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger] .

:hasTitle rdf:type owl:ObjectProperty ;
 knora-base:subjectClassConstraint :book ;
 knora-base:objectClassConstraint knora-base:TextValue .

:hasAuthor rdf:type owl:ObjectProperty ;
 knora-base:subjectClassConstraint :book ;
 knora-base:objectClassConstraint knora-base:TextValue .

Summary of Restrictions on User-Created Ontologies

An ontology can refer to a Knora ontology in another project only if the other
ontology is built-in or shared
(see @ref:Shared Ontologies).

Restrictions on Classes

	Each class must be a subclass of either kb:Resource or
kb:StandoffTag, but not both (note that this forbids
user-created subclasses of kb:Value).

	All the cardinalities that a class defines directly (i.e. does not
inherit from kb:Resource) must be on properties that are defined
in the triplestore.

	Within the cardinalities of a class, there must be a link value
property for each link property and vice versa.

	The cardinality of a link property must be the same as the cardinality
of the corresponding link value property.

	A cardinality on a property with a boolean value must be
owl:cardinality 1 or owl:maxCardinality 1.

	Each class must be a subclass of all the classes that are subject
class constraints of the properties in its cardinalities.

	If it’s a resource class, all its directly defined cardinalities
must be on Knora resource properties (subproperties of kb:hasValue
or kb:hasLinkTo), and all its base classes with Knora IRIs must
also be resource classes. A cardinality on kb:resourceProperty or
kb:hasValue is forbidden. It must also have an rdfs:label.

	If it’s a standoff class, none of its cardinalities may be on Knora
resource properties, and all its base classes with Knora IRIs must
also be standoff classes.

	A class cannot have a cardinality on property P as well as a cardinality
on a subproperty of P.

Restrictions on properties

	The property’s subject class constraint, if provided, must be a
subclass of kb:Resource or kb:StandoffTag, and must be a
subclass of the subject class constraints of all its base
properties.

	Its object class constraint, if provided, must be a subclass of the
object class constraints of all its base properties.

	If the property is a Knora resource property, it must have an object
class constraint and an rdfs:label.

	It can’t be a subproperty of both kb:hasValue and kb:hasLinkTo.

	It can’t be a subproperty of kb:hasFileValue.

	Each of its base properties that has a Knora IRI must also be a
Knora resource property.

Standardisation

The DaSCH [http://dasch.swiss/] intends to coordinate the
standardisation of generally useful entities proposed in
user-created ontologies. We envisage a process in which two or more
projects would initiate the process by starting a public discussion on
proposed entities to be shared. Once a consensus was reached, the
DaSCH [http://dasch.swiss/] would publish these entities in a
@ref:shared ontology).

Knora Ontology Versions

The Knora base ontology has the property kb:ontologyVersion, whose
object is a string that indicates the deployed version of all the Knora
built-in ontologies. This allows the
@ref:repository update program to determine
which repository updates are needed when Knora is upgraded.

The SALSAH GUI Ontology

Overview

The SALSAH GUI ontology provides entities that can be used in
user-created ontologies to indicate to SALSAH (or to another GUI)
how data should be entered and displayed.

The SALSAH GUI ontology is identified by the IRI
http://www.knora.org/ontology/salsah-gui. In the Knora documentation
in general, it is identified by the prefix salsah-gui, but for
brevity, we omit the prefix in this document.

Properties

guiOrder

: Can be attached to an owl:Restriction representing a cardinality
in a resource class, to indicate the order in which properties
should be displayed in the GUI. The object is a non-negative
integer. For example, a property with guiOrder 0 would be
displayed first, followed by a property with guiOrder 1, and so
on.

guiElement

: Can be attached to a property definition to indicate which SALSAH
GUI element should be used to enter data for the property. This
should be one of the individuals of class Guielement described
below.

guiAttribute

: Can be attached to a property definition to provide attributes for
the GUI element specified in guiElement. The objects of this
predicate are written in a DSL with the following syntax:

object = attribute name, "=", attribute value ;

attribute name = identifier ;

identifier = letter , { letter } ;

attribute value = integer | decimal | percent | string | iri ;

percent = integer, "%" ;

iri = "<", string, ">" ;

The attributes used with each GUI element are described below under
@ref:Individuals.

guiAttributeDefinition

: Used only in the salsah-gui ontology itself, as a predicate
attached to instances of Guielement (see @ref:Individuals),
to specify the attributes that can be given as objects of guiAttribute when a given
Guielement. is used. The objects of this predicate are written in
a DSL with the following syntax:

object = attribute name, ["(required)"], ":", attribute type, [enumerated values] ;

enumerated values = "(", enumerated value, { "|", enumerated value } ")" ;

attribute name = identifier ;

attribute type = "integer" | "decimal" | "percent" | "string" | "iri" ;

enumerated value = identifier ;

identifier = letter , { letter } ;

Enumerated values are allowed only if `attribute type` is `string`.
If enumerated values are provided for an attribute, the attribute
value given via `guiAttribute` must be one of the enumerated values.

Classes

Guielement

: The instances of this class are individuals representing SALSAH GUI
elements for data entry.

Individuals

Colorpicker

: A GUI element for selecting a color. A property definition that uses
this element may also contain a guiAttribute predicate whose
object is a string in the form "ncolors=N", where N is an
integer specifying the number of colors to display.

Date

: A GUI element for selecting a date.

Geometry

: A GUI element for selecting the geometry of a two-dimensional
region.

Geonames

: A GUI element for selecting a Geonames [http://www.geonames.org/]
identifier.

Interval

: A GUI element for selecting a time interval in an audio or video
recording.

List

: A GUI element for selecting an item in a hierarchical list (see
@ref:ListValue). A property definition that
uses this element must also contain this guiAttribute predicate:

- `"hlist=<LIST_IRI>"`, where `LIST_IRI` is the IRI of a
 `knora-base:ListNode` that is the root node of a hierarchical list.

Pulldown

: A GUI element for selecting an item in a flat list (see
@ref:ListValue) using a pull-down menu. A
property definition that uses this element must also contain this
guiAttribute predicate:

- `"hlist=<LIST_IRI>"`, where `LIST_IRI` is the IRI of a
 `knora-base:ListNode` that is the root node of a hierarchical list.

Radio

: A GUI element for selecting an item in a flat list (see
@ref:ListValue) using radio buttons. A property
definition that uses this element must also contain this
guiAttribute predicate:

- `"hlist=<LIST_IRI>"`, where `LIST_IRI` is the IRI of a
 `knora-base:ListNode` that is the root node of a hierarchical list.

Richtext

: A GUI element for editing multi-line formatted text.

Searchbox

: A GUI element for searching for a resource by matching text in its
rdfs:label. For Knora API v1, a property definition that uses this
element may also contain this guiAttribute predicate:

- `"numprops=N"`, where `N` is an integer specifying the number of
 describing properties to be returned for each found resource.

For Knora API v2, the `guiAttribute` has no effect.

SimpleText

: A GUI element for editing a single line of unformatted text. A
property definition that uses this element may also contain a
guiAttribute predicate with one or both of the following objects:

- `"size=N"`, where `N` is an integer specifying the size of the
 text field.
- `"maxlength=N"`, where `N` is an integer specifying the maximum
 length of the string to be input.

Slider

: A GUI element for choosing numerical values using a slider. A
property definition that uses this element must also contain a
guiAttribute predicate with both of the following objects:

- `"min=N"`, where `N` is an integer specifying the minimum value
 of the input.
- `"max=N"`, where `N` is an integer specifying the maximum value
 of the input.

Spinbox

: A GUI element for choosing numerical values using a spinbox. A
property definition that uses this element may also contain a
guiAttribute predicate with one or both of the following objects:

- `"min=N"`, where `N` is an integer specifying the minimum value
 of the input.
- `"max=N"`, where `N` is an integer specifying the maximum value
 of the input.

Textarea

: A GUI element for editing multi-line unformatted text. A property
definition that uses this element may also contain a guiAttribute
predicate with one or more of the following objects:

- `"width=N"`, where `N` is a percentage of the window width (an
 integer followed by `%`).
- `"cols=N"`, where `N` is an integer representing the number of
 colums in the text entry box.
- `"rows=N"`, where `N` is an integer specifying the height of the
 text entry box in rows.
- `"wrap=W"`, where `W` is `soft` or `hard` (see
 [wrap](https://www.w3.org/TR/html5/sec-forms.html#element-attrdef-textarea-wrap)).

Checkbox

: A GUI element for choosing a boolean value using a checkbox.

Fileupload

: A GUI element for uploading a file.

The Knora APIs

The Knora APIs include:

	The Knora API versions 1 and 2, which is intended to be used by
virtual research environments and other clients for querying and updating
data.

	The Knora Admin API, which is intended to be used only by the
SALSAH [https://github.com/dhlab-basel/Salsah] user interface, for
administering projects that use Knora as well as Knora itself.

	The Knora Util API, which is intended to be used for information retrieval
about the Knora-stack itself.

@@toc { depth=2 }

@@@ index

	API v1

	API v2

	Admin API

	Util API

@@@

Groups Endpoint

Endpoint Overview

Group Operations:

	GET: /admin/groups : return all groups

	GET: /admin/groups/<groupIri> : return single group identified by [IRI]

	POST: /admin/groups : create new group

	PUT: /admin/groups/<groupIri> : update groups’s basic information

	PUT: /admin/groups/<groupIri>/status : update group’s status

	DELETE: /admin/groups/<groupIri> : delete group (set status to false)

Member Operations:

	GET: /admin/groups/<groupIri>/members : return all group members

Group Operations

Create Group

	Required permission: SystemAdmin / hasProjectAllAdminPermission
/ hasProjectAllGroupAdminPermission

	Required information: name (unique inside project), project IRI

	Optional information: group description

	Returns information about the newly created group

	TypeScript Docs: groupFormats - CreateGroupApiRequestV1

	POST: /admin/groups

	BODY:

{
 "name": "NewGroup",
 "description": "NewGroupDescription",
 "project": "http://rdfh.ch/projects/00FF",
 "status": true,
 "selfjoin": false
}

Update group information

	Required permission: SystemAdmin / hasProjectAllAdminPermission
/ hasProjectAllGroupAdminPermission /
hasProjectRestrictedGroupAdminPermission (for this group)

	Changeable information: name, description, selfjoin

	TypeScript Docs: groupFormats - ChangeGroupApiRequestADM

	PUT: /admin/groups/<groupIri>

	BODY:

{
 "name": "UpdatedGroupName",
 "description": "UpdatedGroupDescription".
 "selfjoin": false
}

Change Group Status:

	Required permission: SystemAdmin / hasProjectAllAdminPermission

	Changeable information: status

	Remark: Deleting a group, removes all members from the group.

	PUT: /admin/groups/<groupIri>/status

	BODY:

{
 "status": false
}

Delete Group:

	Required permission: SystemAdmin / hasProjectAllAdminPermission

	Remark: The same as changing the groups status to
false. To un-delete, set status to true.

	DELETE: /admin/groups/<groupIri>

Example Group Information stored in admin named graph: :

<http://rdfh.ch/groups/[shortcode]/[UUID]>
 rdf:type knora-admin:UserGroup ;
 knora-admin:groupName "Name of the group" ;
 knora-admin:groupDescription "A description of the group" ;
 knora-admin:belongsToProject <http://rdfh.ch/projects/[UUID]> ;
 knora-admin:status "true"^^xsd:boolean ;
 knora-admin:hasSelfJoinEnabled "false"^^xsd:boolean .

Member Operations

Get Group Members

	Returns all group members

	Required permission: SystemAdmin / ProjectAdmin

	GET: /admin/groups/<groupIri>/members

Knora Admin API

The Knora admin API makes it possible to administer Knora projects, users, user groups, permissions, and hierarchical lists.

@@toc { depth=1 }

@@@ index

	Introduction

	Overview

	Users Endpoint

	Projects Endpoint

	Groups Endpoint

	Lists Endpoint

	Permissions Endpoint

	Stores Endpoint

@@@

Introduction: Using the Admin API

@@toc { depth=2 }

RESTful API

The Knora Admin API is a RESTful API that allows for reading and adding of
administrative resources from and to Knora and changing their values
using HTTP requests. The actual data is submitted as JSON (request and
response format). The various HTTP methods are applied according to the
widespread practice of RESTful APIs: GET for reading, POST for adding,
PUT for changing resources and values, and DELETE to delete resources or
values (see
Using HTTP Methods for RESTful Services [http://www.restapitutorial.com/lessons/httpmethods.html]).

Knora IRIs in the Admin API

Every resource that is created or hosted by Knora is identified by a
unique ID called an Internationalized Resource Identifier (@extrefIRI). The IRI is required for every API operation to identify the resource in question. A Knora IRI has itself the format of a URL.
For some API operations, the IRI has to be URL-encoded (HTTP GET requests).

Unlike the Knora API v2, the admin API uses internal IRIs, i.e. the actual IRIs
that are stored in the triplestore (see @ref:Knora IRIs).

Admin Path Segment

Every request to Admin API includes admin as a path segment, e.g.
http://host/admin/users/iri/http%3A%2F%2Frdfh.ch%2Fusers%2Froot.

Admin API Response Format

If an API request is handled successfully, Knora responds
with a 200 HTTP status code. The actual answer from Knora (the
representation of the requested resource or information about the
executed API operation) is sent in the HTTP body, encoded as JSON.

Placeholder host in sample URLs

Please note that all the sample URLs used in this documentation contain
host as a placeholder. The placeholder host has to be replaced by
the actual hostname (and port) of the server the Knora instance is
running on.

Authentication

For all API operations that target at changing resources or values, the
client has to provide credentials (username and password) so that the
API server can authenticate the user making the request. Credentials can
be sent as a part of the HTTP header or as parts of the URL (see
@ref:Authentication in Knora).

OpenAPI/Swagger

The Admin API uses
OpenAPI [https://github.com/OAI/OpenAPI-Specification] for
documentation purposes. To try it out, run webapi and open
http://host/api-docs/swagger.json in http://petstore.swagger.io .
Alternatively, the documentation can be looked at by using
ReDoc [https://github.com/Rebilly/ReDoc], which is provided in
knora/docs/redoc/index.html and is published under https://docs.knora.org/api-admin/index.html.

Admin API Endpoints

TODO

Lists Endpoint

Endpoint Overview

List Operations:

	GET: /admin/lists[?projectIri=<projectIri>] : return all lists optionally filtered by project

	GET: /admin/lists/<listIri> : return complete list with children

	POST: /admin/lists : create new list

	POST: /admin/lists/<nodeIri> : create new child node under the supplied parent node IRI

	NOT IMPLEMENTED: DELETE: /admin/lists/<listIri> : delete list including children if not used

	GET: /admin/lists/infos/<listIri> : return list information (without children)

	PUT: /admin/lists/infos/<listIri> : update list information

List Node operations

	GET: /admin/lists/nodes/<nodeIri> : return list node information (without children)

	NOT IMPLEMENTED: POST: /admin/lists/nodes/<nodeIri> : update list node information

	NOT IMPLEMENTED: DELETE: /admin/lists/nodes/<nodeIri> : delete list node including children if not used

List Operations

Get lists

	Required permission: none

	Return all lists optionally filtered by project

	GET: /admin/lists[?projectIri=<projectIri>]

Get list

	Required permission: none

	Return complete list with children

	GET: /admin/lists/<listIri>

Create new list

	Required permission: SystemAdmin / ProjectAdmin

	POST: /admin/lists

	BODY:

{
 "projectIri": "someprojectiri",
 "labels": [{ "value": "Neue Liste", "language": "de"}],
 "comments": []
}

Create new child node

	Required permission: SystemAdmin / ProjectAdmin

	Appends a new child node under the supplied nodeIri. If the supplied nodeIri
is the listIri, then a new child node is appended to the top level. Children
are currently only appended.

	POST: /admin/lists/<nodeIri>

	BODY:

{
 "parentNodeIri": "nodeIri",
 "projectIri": "someprojectiri",
 "name": "first",
 "labels": [{ "value": "New First Child List Node Value", "language": "en"}],
 "comments": [{ "value": "New First Child List Node Comment", "language": "en"}]
}

Get list’s information

	Required permission: none

	Return list information (without children)

	GET: /admin/lists/infos/<listIri>

Update list’s information

	Required permission: none

	Update list information

	PUT: /admin/lists/infos/<listIri>

	BODY:

{
 "listIri": "listIri",
 "projectIri": "someprojectiri",
 "labels": [{ "value": "Neue geönderte Liste", "language": "de"}, { "value": "Changed list", "language": "en"}],
 "comments": [{ "value": "Neuer Kommentar", "language": "de"}, { "value": "New comment", "language": "en"}]
}

List Node Operations

Get List Node Information

	Required permission: none

	Return list node information (without children)

	GET: /admin/lists/nodes/<nodeIri>

Admin Endpoint

For the management of users, projects, and groups, the Knora API
following a resource centric approach, provides three endpoints
corresponding to the three classes of objects that they have an effect
on, namely:

	Users Endpoint: http://server:port/admin/users - knora-base:User

	Projects Endpoint: http://server:port/admin/projects -
knora-base:knoraProject

	Groups Endpoint: http://server:port/admin/groups -
knora-base:UserGroup

All information regarding users, projects and groups is stored in the
http://www.knora.org/admin named graph.

Permissions Endpoint

	Add/change/delete administrative permissions:

	Required permission: SystemAdmin / hasProjectAllAdminPermission
/ hasProjectRightsAdminPermission

	Add/change/delete default object access permissions:

	Required permission: SystemAdmin / hasProjectAllAdminPermission
/ hasProjectRightsAdminPermission

Projects Endpoint

Endpoint Overview

Project Operations:

	GET: /admin/projects : return all projects

	POST: /admin/projects : create a new project

	GET: /admin/projects/[iri | shortname | shortcode]/<identifier> : returns a single project identified either through iri, shortname, or shortcode

	PUT: /admin/projects/iri/<identifier> : update a project identified by iri

	DELETE: /admin/projects/iri/<identifier> : update project status to false

	GET: /admin/projects/iri/<identifier>/AllData : returns a TriG file containing the project’s data

Project Member Operations:

	GET: /admin/projects/[iri | shortname | shortcode]/<identifier>/members : returns all members part of a project identified through iri, shortname or shortcode

Project Admin Member Operations:

	GET: /admin/projects/[iri | shortname | shortcode]/<identifier>/admin-members : returns all admin members part of a project identified through iri, shortname or shortcode

Project Keyword Operations:

	GET: /admin/projects/Keywords : returns all unique keywords for all projects as a list

	GET: /admin/projects/iri/<identifier>/Keywords : returns all keywords for a single project

Project Restricted View Settings Operations:

	GET: /admin/projects/iri/<identifier>/RestrictedViewSettings : returns the project’s restricted view settings

Project Operations

Create a new project:

	Required permission: SystemAdmin

	Required information: shortname (unique; used for named graphs),
status, selfjoin

	Optional information: longname, description, keywords, logo

	Returns information about the newly created project

	Remark: There are two distinct use cases / payload combination:
(1) change ontology and data graph: ontologygraph, datagraph,
(2) basic project information: shortname, longname, description,
keywords, logo, institution, status, selfjoin

	TypeScript Docs: projectFormats - CreateProjectApiRequestV1

	POST: /admin/projects/

	BODY:

{
 "shortname": "newproject",
 "longname": "project longname",
 "description": "project description",
 "keywords": "keywords",
 "logo": "/fu/bar/baz.jpg",
 "status": true,
 "selfjoin": false
}

Update project information:

	Required permission: SystemAdmin / ProjectAdmin

	Changeable information: shortname, longname, description,
keywords, logo, status, selfjoin

	TypeScript Docs: projectFormats - ChangeProjectApiRequestV1

	PUT: /admin/projects/iri/<projectIri>

	BODY:

{
 "shortname": "newproject",
 "longname": "project longname",
 "description": "project description",
 "keywords": "keywords",
 "logo": "/fu/bar/baz.jpg",
 "status": true,
 "selfjoin": false
}

Delete project (update project status):

	Required permission: SystemAdmin / ProjectAdmin

	Remark: The same as updating a project and changing status to
false. To un-delete, set status to true.

	DELETE: /admin/projects/iri/<projectIri>

	BODY: empty

Dump project data:

Returns a TriG [https://www.w3.org/TR/trig/] file containing the project’s
ontologies, resource data, admin data, and permissions.

	Required permission: SystemAdmin / ProjectAdmin

	Required information: project IRI

	GET: /admin/projects/iri/<identifier>/AllData

Project Member Operations

Get project members:

	Required permission: SystemAdmin / ProjectAdmin

	Required information: project identifier

	GET: /admin/projects/[iri | shortname | shortcode]/<identifier>/members

Project Admin Member Operations

Get project members:

	Required permission: SystemAdmin / ProjectAdmin

	Required information: project identifier

	GET: /admin/projects/[iri | shortname | shortcode]/<identifier>/admin-members

Restricted View Settings Operations

Operates on the following properties:

	knora-admin:projectRestrictedViewSize - takes the IIIF size value

	knora-admin:projectRestrictedViewWatermark - takes the path to the watermark image. Currently not used.

Get the restricted view settings:

	Required permission: ProjectAdmin

	Required information: identifier. The identifier can be the project’s IRI, shortname or shortcode.

	GET: /admin/projects/[iri | shortname | shortcode]/<identifier>/RestrictedViewSettings

Example Data

The following is an example for project information stored in the admin named graph:

<http://rdfh.ch/projects/00FF>
 rdf:type knora-admin:knoraProject ;
 knora-admin:projectShortname "images"^^xsd:string ;
 knora-admin:projectShortcode "00FF"^^xsd:string ;
 knora-admin:projectLongname "Image Collection Demo"^^xsd:string ;
 knora-admin:projectDescription "A demo project of a collection of images"@en ;
 knora-admin:projectKeyword "images"^^xsd:string,
 "collection"^^xsd:string ;
 knora-admin:projectRestrictedViewSize "!512,512"^^xsd:string ;
 knora-admin:projectRestrictedViewWatermark "path_to_image"^^xsd:string ;
 knora-admin:belongsToInstitution <http://rdfh.ch/institutions/dhlab-basel> ;
 knora-admin:status "true"^^xsd:boolean ;
 knora-admin:hasSelfJoinEnabled "false"^^xsd:boolean .

Stores Endpoint

Users Endpoint

Endpoint Overview

User Operations:

	GET: /admin/users : return all users

	GET: /admin/users/[iri | email | username]/<identifier> : return single user identified by [IRI | email | username]

	POST: /admin/users/ : create new user

	PUT: /admin/users/iri/<userIri>/BasicUserInformation : update user’s basic user information

	PUT: /admin/users/iri/<userIri>/Password : update user’s password

	PUT: /admin/users/iri/<userIri>/Status : update user’s status

	DELETE: /admin/users/iri/<userIri> : delete user (set status to false)

User’s project membership operations

	GET: /admin/users/iri/<userIri>/project-memberships : get user’s project memberships

	POST: /admin/users/iri/<userIri>/project-memberships/<projectIri> : add user to project (to ProjectMember group)

	DELETE: /admin/users/iri/<userIri>/project-memberships/<projectIri> : remove user from project (to ProjectMember group)

User’s group membership operations

	GET: /admin/users/iri/<userIri>/project-admin-memberships : get user’s ProjectAdmin group memberships

	POST: /admin/users/iri/<userIri>/project-admin-memberships/<projectIri> : add user to ProjectAdmin group

	DELETE: /admin/users/iri/<userIri>/project-admin-memberships/<projectIri> : remove user from ProjectAdmin group

	GET: /admin/users/iri/<userIri>/group-memberships : get user’s normal group memberships

	POST: /admin/users/iri/<userIri>/group-memberships/<groupIri> : add user to normal group

	DELETE: /admin/users/iri/<userIri>/group-memberships/<groupIri> : remove user from normal group

	PUT: /admin/users/iri/<userIri>/SystemAdmin : Add/remove user to/from SystemAdmin group

User Operations

Get users

	Required permission: SystemAdmin

	GET: /admin/users

Get user

	Required permission:

	SystemAdmin / self: for getting all properties

	All other users: for getting only the public properties (givenName and familyName)

	GET:/admin/users/[iri | email | username]/<identifier>

Create user

	Required permission: none, self-registration is allowed

	Required information: email (unique), given name, family name,
password, password, status, systemAdmin

	Returns information about the newly created user

	TypeScript Docs: userFormats - CreateUserApiRequestV1

	POST: /admin/users

	BODY:

{
 "email": "donald.duck@example.org",
 "givenName": "Donald",
 "familyName": "Duck",
 "username": "donald.duck",
 "password": "test",
 "status": true,
 "lang": "en",
 "systemAdmin": false
}

Update basic user information**

	Required permission: SystemAdmin / self

	Changeable information: email, given name, family name,
password, status, SystemAdmin membership

	TypeScript Docs: userFormats - ChangeUserApiRequestADM

	PUT: /admin/users/iri/<userIri>/BasicUserInformation

	BODY:

{
 "username": "donald.big.duck",
 "email": "donald.big.duck@example.org",
 "givenName": "Big Donald",
 "familyName": "Duckmann",
 "lang": "de"
}

Update user’s password

	Required permission: SystemAdmin / self

	Changeable information: password

	PUT: /admin/users/iri/<userIri>/Password

	BODY:

{
 "requesterPassword": "test",
 "newPassword": "test1234"
}

Delete user

	Required permission: SystemAdmin / self

	Remark: The same as updating a user and changing status to
false. To un-delete, set status to true.

	PUT: /admin/users/iri/<userIri>/Status

	BODY:

{
 "status": false // true or false
}

Delete user (-\update user)**

	Required permission: SystemAdmin / self

	Remark: The same as updating a user and changing status to
false. To un-delete, set status to true.

	DELETE: /admin/users/iri/<userIri>

	BODY: empty

User’s project membership operations

Get user’s project memberships

	GET: /admin/users/iri/<userIri>/project-memberships

Add/remove user to/from project

	Required permission: SystemAdmin / ProjectAdmin / self (if
project self-assignment is enabled)

	Required information: project IRI, user IRI

	Effects: knora-base:isInProject user property

	POST / DELETE: /admin/users/iri/<userIri>/project-memberships/<projectIri>

	BODY: empty

User’s group membership operations

Get user’s project admin memberships

	GET: /admin/users/iri/<userIri>/project-admin-memberships

Add/remove user to/from project admin group

	Required permission: SystemAdmin / ProjectAdmin

	Required information: project IRI, user IRI

	Effects: knora-base:isInProjectAdminGroup user property

	POST / DELETE: /admin/users/iri/<userIri>/project-admin-memberships/<projectIri>

	BODY: empty

Get user’s group memberships**

	GET: /admin/users/iri/<userIri>/group-memberships

Add/remove user to/from ‘normal’ group** (not SystemAdmin or ProjectAdmin)

	Required permission: SystemAdmin / hasProjectAllAdminPermission
/ hasProjectAllGroupAdminPermission /
hasProjectRestrictedGroupAdminPermission (for this group) / User
(if group self-assignment is enabled)

	Required information: group IRI, user IRI

	Effects: knora-base:isInGroup

	POST / DELETE: /admin/users/iri/<userIri>/group-memberships/<groupIri>

	BODY: empty

Add/remove user to/from system admin group

	Required permission: SystemAdmin / self

	Effects property: knora-base:isInSystemAdminGroup with value
true or false

	PUT: /admin/users/iri/<userIri>/SystemAdmin

	BODY:

{
 "newSystemAdminMembershipStatus": false
}

Example Data

The following is an example for user information stored in the admin named graph:

<http://rdfh.ch/users/c266a56709>
 rdf:type knora-admin:User ;
 knora-admin:username "user01.user1"^^xsd:string ;
 knora-admin:email "user01.user1@example.com"^^xsd:string ;
 knora-admin:givenName "User01"^^xsd:string ;
 knora-admin:familyName "User"^^xsd:string ;
 knora-admin:password "$e0801$FGl9FDIWw+D83OeNPGmD9u2VTqIkJopIQECgmb2DSWQLS0TeKSvYoWAkbEv6KxePPlCI3CP9MmVHuvnWv8/kag==$mlegCYdGXt+ghuo8i0rLjgOiNnGDW604Q5g/v7zwBPU="^^xsd:string ;
 knora-admin:preferredLanguage "de"^^xsd:string ;
 knora-admin:status "true"^^xsd:boolean ;
 knora-admin:isInProject <http://rdfh.ch/projects/00FF> ;
 knora-admin:isInSystemAdminGroup "false"^^xsd:boolean ;
 knora-admin:isInProjectAdminGroup <http://rdfh.ch/projects/00FF> .

Health

@@toc

Knora Util API

The Knora Util API allows retrieving information about the Knora-stack itself.
It consists of the following elements:

	Health: Knora health state

	Version: Versions of used stack components

@@toc { depth=1 }

@@@ index

	Health

	Version

@@@

Version

@@toc

The version endpoint provides the versions of the used components in the Knora-stack.
The response has the type application/json and contains the following information:

	name: has the value “version”

	version numbers for the following components:

	akkaHttp

	gdbFree

	gdbSE

	sbt

	scala

	sipi

	webapi

Example request

GET /version

Example response

{
 "akkaHttp": "10.1.7",
 "gdbFree": "8.10.0-free",
 "gdbSE": "8.5.0-se",
 "name": "version",
 "sbt": "1.2.8",
 "scala": "2.12.8",
 "sipi": "v2.0.1",
 "webapi": "10.0.0-7-gc5a72b3-SNAPSHOT"
}

Adding Resources

@@toc

To create a resource, the HTTP method POST has to be used.
The request has to be sent to the Knora server using the resources
path segment:

HTTP POST to http://host/v1/resources

Unlike in the case of GET requests, the request body consists of JSON
describing the resource to be created.

Creating resources requires authentication since only known users may
add resources.

Adding Resources Without Image Files

The format of the JSON used to create a resource without an image file is
described in the TypeScript interface
createResourceWithoutRepresentationRequest in module
createResourceFormats. It requires the IRI of the resource class the
new resource belongs to, a label describing the new resource, the IRI of
the project the new resource belongs to, and the properties to be
assigned to the new resource.

The request header’s content type has to be set to application/json.

Adding Resources with Image Files

Certain resource classes can have attached image files. There are two ways to
attach a file to a resource: Either by submitting directly the binaries of the file in a
an HTTP Multipart request, or by indicating the location of the file. The two cases are referred to
as non-GUI case and GUI case (see @ref:Sipi and Knora).

Including the binaries (non-GUI case)

In order to include the binaries, a HTTP Multipart request has to be
sent. One part contains the JSON (same format as described for
Adding Resources Without Images Files)
and has to be named json. The other part contains the file’s name, its binaries, and its mime type
and has to be named file. The following example illustrates how to
make this type of request using Python 3:

#!/usr/bin/env python3

import requests, json

a Python dictionary that will be turned into a JSON object
resourceParams = {
 'restype_id': 'http://www.knora.org/ontology/test#testType',
 'properties': {
 'http://www.knora.org/ontology/test#testtext': [
 {'richtext_value': {'utf8str': "test"}}
],
 'http://www.knora.org/ontology/test#testnumber': [
 {'int_value': 1}
]
 },
 'label': "test resource",
 'project_id': 'http://rdfh.ch/projects/testproject'
}

the name of the file to be submitted
filename = "myimage.jpg"

a tuple containing the file's name, its binaries and its mimetype
file = {'file': (filename, open(filename, 'rb'), "image/jpeg")} # use name "file"

do a POST request providing both the JSON and the binaries
r = requests.post("http://host/v1/resources",
 data={'json': json.dumps(resourceParams)}, # use name "json"
 files=file,
 auth=('user', 'password'))

Please note that the file has to be read in binary mode (by default it
would be read in text mode).

Indicating the location of a file (GUI case)

This request works similarly to
Adding Resources Without Image Files. The JSON format is described
in the TypeScript interface createResourceWithRepresentationRequest in
module createResourceFormats. The request header’s content type has to
set to application/json.

In addition to Adding Resources Without Image Files, the
(temporary) name of the file, its original name, and mime type have to
be provided (see @ref:GUI Case).

Response to a Resource Creation

When a resource has been successfully created, Knora sends back a JSON
containing the new resource’s IRI (res_id) and its properties. The
resource IRI identifies the resource and can be used to perform future
Knora API V1 operations.

The JSON format of the response is described in the TypeScript interface
createResourceResponse in module createResourceFormats.

Changing a Resource’s Label

A resource’s label can be changed by making a PUT request to the path
segments resources/label. The resource’s Iri has to be provided in the
URL (as its last segment). The new label has to submitted as JSON in the
HTTP request’s body.

HTTP PUT to http://host/v1/resources/label/resourceIRI

The JSON format of the request is described in the TypeScript interface
changeResourceLabelRequest in module createResourceFormats. The
response is described in the TypeScript interface
changeResourceLabelResponse in module createResourceFormats.

Bulk Import

If you have a large amount of data to import into Knora, it can be more
convenient to use the bulk import feature than to create resources one
by one. In a bulk import operation, you submit an XML document to Knora,
describing multiple resources to be created. This is especially useful
if the resources to be created have links to one another. Knora checks
the entire request for consistency as as a whole, and performs the
update in a single database transaction.

Only system or project administrators may use the bulk import.

The procedure for using this feature is as follows
(see the @ref:example below).

	Make an HTTP GET request to Knora to @ref:get XML schemas describing
the XML to be provided for the import.

	@ref:Generate an XML import document representing the
data to be imported, following the Knora import schemas that were generated in step 1.
You will probably want to write a script to do this. Knora is not involved in this step.
If you are also importing image files, this XML document needs to
@ref:contain the filesystem paths of those files.

	@ref:Validate your XML import document, using an XML schema validator such as
Apache Xerces [http://xerces.apache.org] or Saxon [http://www.saxonica.com], or an
XML development environment such as Oxygen [https://www.oxygenxml.com]. This will
help ensure that the data you submit to Knora is correct. Knora is not involved in this step.

	@ref:Submit the XML import document to Knora.

In this procedure, the person responsible for generating the XML import
data need not be familiar with RDF or with the ontologies involved.

When Knora receives an XML import, it validates it first using the
relevant XML schemas, and then using the same internal checks that it
performs when creating any resource.

The details of the XML import format are illustrated in the following
examples.

Bulk Import Example

Suppose we have a project with existing data (but no image files),
which we want to import into Knora. We have created an
ontology called http://www.knora.org/ontology/0801/biblio for the
project, and this ontology also uses definitions from another ontology,
called http://www.knora.org/ontology/0801/beol.

1. Get XML Schemas

To get XML schemas for an import, we use the following route, specifying
the (URL-encoded) IRI of our project’s main ontology (in this case
http://www.knora.org/ontology/0801/biblio):

HTTP GET to http://host/v1/resources/xmlimportschemas/ontologyIRI

In our example, the URL could be:

http://localhost:3333/v1/resources/xmlimportschemas/http%3A%2F%2Fwww.knora.org%2Fontology%2F0801%2Fbiblio

This returns a Zip archive called p0801-biblio-xml-schemas.zip,
containing three files:

	p0801-biblio.xsd: The schema for our main ontology.

	p0801-beol.xsd: A schema for another ontology that our main ontology depends on.

	knoraXmlImport.xsd: The standard Knora XML import schema, used by all XML imports.

2. Generate XML Import Document

We now convert our existing data to XML, probably by writing a custom
script. The resulting XML import document could look like this:

<?xml version="1.0" encoding="UTF-8"?>
<knoraXmlImport:resources xmlns="http://api.knora.org/ontology/0801/biblio/xml-import/v1#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://api.knora.org/ontology/0801/biblio/xml-import/v1# p0801-biblio.xsd"
 xmlns:p0801-biblio="http://api.knora.org/ontology/0801/biblio/xml-import/v1#"
 xmlns:p0801-beol="http://api.knora.org/ontology/0801/beol/xml-import/v1#"
 xmlns:knoraXmlImport="http://api.knora.org/ontology/knoraXmlImport/v1#">
 <p0801-beol:person id="abel">
 <knoraXmlImport:label>Niels Henrik Abel</knoraXmlImport:label>
 <p0801-beol:hasFamilyName knoraType="richtext_value">Abel</p0801-beol:hasFamilyName>
 <p0801-beol:hasGivenName knoraType="richtext_value">Niels Henrik</p0801-beol:hasGivenName>
 <p0801-beol:personHasTitle knoraType="richtext_value" lang="en">Sir</p0801-beol:personHasTitle>
 </p0801-beol:person>
 <p0801-beol:person id="holmes">
 <knoraXmlImport:label>Sherlock Holmes</knoraXmlImport:label>
 <p0801-beol:hasFamilyName knoraType="richtext_value">Holmes</p0801-beol:hasFamilyName>
 <p0801-beol:hasGivenName knoraType="richtext_value">Sherlock</p0801-beol:hasGivenName>
 </p0801-beol:person>
 <p0801-biblio:Journal id="math_intelligencer">
 <knoraXmlImport:label>Math Intelligencer</knoraXmlImport:label>
 <p0801-biblio:hasName knoraType="richtext_value">Math Intelligencer</p0801-biblio:hasName>
 </p0801-biblio:Journal>
 <p0801-biblio:JournalArticle id="strings_in_the_16th_and_17th_centuries" creationDate="2019-01-09T15:45:54Z">
 <knoraXmlImport:label>Strings in the 16th and 17th Centuries</knoraXmlImport:label>
 <p0801-biblio:p0801-beol__comment knoraType="richtext_value" mapping_id="http://rdfh.ch/standoff/mappings/StandardMapping">
 <text xmlns="">The most interesting article in Math Intelligencer.</text>
 </p0801-biblio:p0801-beol__comment>
 <p0801-biblio:endPage knoraType="richtext_value">73</p0801-biblio:endPage>
 <p0801-biblio:isPartOfJournal>
 <p0801-biblio:Journal knoraType="link_value" target="math_intelligencer" linkType="ref"/>
 </p0801-biblio:isPartOfJournal>
 <p0801-biblio:journalVolume knoraType="richtext_value">27</p0801-biblio:journalVolume>
 <p0801-biblio:publicationHasAuthor>
 <p0801-beol:person knoraType="link_value" linkType="ref" target="abel"/>
 </p0801-biblio:publicationHasAuthor>
 <p0801-biblio:publicationHasAuthor>
 <p0801-beol:person knoraType="link_value" linkType="ref" target="holmes"/>
 </p0801-biblio:publicationHasAuthor>
 <p0801-biblio:publicationHasDate knoraType="date_value">GREGORIAN:1976</p0801-biblio:publicationHasDate>
 <p0801-biblio:publicationHasTitle knoraType="richtext_value" lang="en">Strings in the 16th and 17th Centuries</p0801-biblio:publicationHasTitle>
 <p0801-biblio:publicationHasTitle knoraType="richtext_value">An alternate title</p0801-biblio:publicationHasTitle>
 <p0801-biblio:startPage knoraType="richtext_value">48</p0801-biblio:startPage>
 </p0801-biblio:JournalArticle>
</knoraXmlImport:resources>

This illustrates several aspects of XML imports:

	The root XML element must be knoraXmlImport:resources.

	There is an XML namespace corresponding each ontology used in the
import. These namespaces can be found in the XML schema files
returned by Knora.

	We have copied and pasted
xmlns="http://api.knora.org/ontology/0801/biblio/xml-import/v1#"
from the main XML schema, p0801-biblio.xsd. This enables the Knora
API server to identify the main ontology we are using.

	We have used xsi:schemaLocation to indicate the main schema’s
namespace and filename. If we put our XML document in the same
directory as the schemas, and we run an XML validator to check the
XML, it should load the schemas.

	The child elements of knoraXmlImport:resources represent resources
to be created. The order of these elements is unimportant.

	Each resource must have an ID, which must be an XML
NCName [https://www.w3.org/TR/REC-xml-names/#NT-NCName], and must
be unique within the file. These IDs are used only during the
import, and will not be stored in the triplestore.

	Each resource can optionally have a creationDate attribute, which
can be an xsd:dateTime [https://www.w3.org/TR/xmlschema11-2/#dateTime]
or an xsd:dateTimeStamp [https://www.w3.org/TR/xmlschema11-2/#dateTimeStamp].
If creationDate is not supplied, the current time is used.

	The first child element of each resource must be a
knoraXmlImport:label, which will be stored as the resource’s
rdfs:label.

	Optionally, the second child element of a resource can provide
metadata about a file to be attached to the resource (see
bulk-import-with-digital-representations).

	The remaining child elements of each resource represent its property
values. These must be sorted in alphabetical order by property name.

	If a property has mutliple values, these are represented as multiple
adjacent property elements.

	The type of each value must be specified using the attribute
knoraType.

	A link to another resource described in the XML import is
represented as a child element of a property element, with
attributes knoraType="link_value" and linkType="ref", and a
target attribute containing the ID of the target resource.

	There is a specfic syntax for referring to properties from other
ontologies. In the example, p0801-beol:comment is defined in the
ontology http://www.knora.org/ontology/0001/beol. In the XML, we
refer to it as p0801-biblio:p0801-beol__comment.

	A text value can contain XML markup. If it does:

	The text value element must have the attribute mapping_id,
specifying a mapping from XML to standoff markup (see
XML-to-standoff-mapping).

	It is necessary to specify the appropriate XML namespace (in
this case the null namespace, xmlns="") for the XML markup
in the text value.

	The XML markup in the text value will not be validated by
the schema.

	In an XML tag that is mapped to a standoff link tag, the
link target can refer either to the IRI of a resoruce that
already exists in the triplestore, or to the ID of a
resource described in the import. If a link points to a
resource described in the import, the ID of the target
resource must be prefixed with ref:. In the example above,
using the standard mapping, the standoff link to
math_intelligencer has the target
ref:math_intelligencer.

	A text value can have a lang attribute, whose value is an ISO 639-1
code specifying the language of the text.

3. Validate XML Import Document

You can use an XML schema validator such as Apache Xerces [http://xerces.apache.org] or
Saxon [http://saxon.sourceforge.net/], or an XML development environment
such as Oxygen [https://www.oxygenxml.com], to check that your XML import document
is valid according to the schemas you got from Knora.

For example, using Saxon:

java -cp ./saxon9ee.jar com.saxonica.Validate -xsd:p0801-biblio.xsd -s:data.xml

4. Submit XML Import Document to Knora

To create these resources in Knora, make an HTTP post request with the XML import document
as the request body. The URL must specify the (URL-encoded) IRI of the project in which
the resources should be created:

HTTP POST to http://host/v1/resources/xmlimport/projectIRI

For example, using curl [https://curl.haxx.se/]:

curl -v -u root@example.com:test --data @data.xml --header "Content-Type: application/xml" http://localhost:3333/v1/resources/xmlimport/http%3A%2F%2Frdfh.ch%2Fprojects%2F0801

Bulk Import with Links to Existing Resources

Having run the import in the previous example, we can import more data
with links to the data that is now in the triplestore:

<?xml version="1.0" encoding="UTF-8"?>
<knoraXmlImport:resources xmlns="http://api.knora.org/ontology/0801/biblio/xml-import/v1#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://api.knora.org/ontology/0801/biblio/xml-import/v1# p0801-biblio.xsd"
 xmlns:p0801-biblio="http://api.knora.org/ontology/0801/biblio/xml-import/v1#"
 xmlns:p0801-beol="http://api.knora.org/ontology/0801/beol/xml-import/v1#"
 xmlns:knoraXmlImport="http://api.knora.org/ontology/knoraXmlImport/v1#">
 <p0801-biblio:JournalArticle id="strings_in_the_18th_century">
 <knoraXmlImport:label>Strings in the 18th Century</knoraXmlImport:label>
 <p0801-biblio:p0801-beol__comment knoraType="richtext_value" mapping_id="http://rdfh.ch/standoff/mappings/StandardMapping">
 <text xmlns="">The most boring article in Math Intelligencer.</text>
 </p0801-biblio:p0801-beol__comment>
 <p0801-biblio:endPage knoraType="richtext_value">76</p0801-biblio:endPage>
 <p0801-biblio:isPartOfJournal>
 <p0801-biblio:Journal knoraType="link_value" linkType="iri" target="http://rdfh.ch/biblio/QMDEHvBNQeOdw85Z2NSi9A"/>
 </p0801-biblio:isPartOfJournal>
 <p0801-biblio:journalVolume knoraType="richtext_value">27</p0801-biblio:journalVolume>
 <p0801-biblio:publicationHasAuthor>
 <p0801-beol:person knoraType="link_value" linkType="iri" target="http://rdfh.ch/biblio/c-xMB3qkRs232pWyjdUUvA"/>
 </p0801-biblio:publicationHasAuthor>
 <p0801-biblio:publicationHasDate knoraType="date_value">GREGORIAN:1977</p0801-biblio:publicationHasDate>
 <p0801-biblio:publicationHasTitle knoraType="richtext_value">Strings in the 18th Century</p0801-biblio:publicationHasTitle>
 <p0801-biblio:startPage knoraType="richtext_value">52</p0801-biblio:startPage>
 </p0801-biblio:JournalArticle>
</knoraXmlImport:resources>

Note that in the link elements referring to existing resources, the
linkType attribute has the value iri, and the target attribute
contains the IRI of the target resource.

Bulk Import with Image Files

To attach an image file to a resource, we must provide the
element knoraXmlImport:file before the property elements. In this
element, we must give the absolute filesystem path to the file that
should be attached to the resource, along with its MIME type:

<?xml version="1.0" encoding="UTF-8"?>
<knoraXmlImport:resources xmlns="http://api.knora.org/ontology/incunabula/xml-import/v1#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://api.knora.org/ontology/incunabula/xml-import/v1# incunabula.xsd"
 xmlns:incunabula="http://api.knora.org/ontology/incunabula/xml-import/v1#"
 xmlns:knoraXmlImport="http://api.knora.org/ontology/knoraXmlImport/v1#">
 <incunabula:book id="test_book">
 <knoraXmlImport:label>a book with one page</knoraXmlImport:label>
 <incunabula:title knoraType="richtext_value">the title of a book with one page</incunabula:title>
 </incunabula:book>
 <incunabula:page id="test_page">
 <knoraXmlImport:label>a page with an image</knoraXmlImport:label>
 <knoraXmlImport:file path="/usr/local/share/import-images/incunabula/12345.tiff" mimetype="image/tiff"/>
 <incunabula:origname knoraType="richtext_value">Chlaus</incunabula:origname>
 <incunabula:pagenum knoraType="richtext_value">1a</incunabula:pagenum>
 <incunabula:partOf>
 <incunabula:book knoraType="link_value" linkType="ref" ref="test_book"/>
 </incunabula:partOf>
 <incunabula:seqnum knoraType="int_value">1</incunabula:seqnum>
 </incunabula:page>
</knoraXmlImport:resources>

During the processing of the bulk import, Knora will
communicate the location of file to Sipi, which will convert it to JPEG 2000
for storage.

Adding a Value

In order to add values to an existing resource, the HTTP method POST
has to be used. The request has to be sent to the Knora server using the
values path segment. Creating values requires authentication since
only known users may add values.

Adding a Property Value

In order to add a value to a resource, its property type, value, and
project has to be indicated in the JSON. Also the IRI of the resource
the new value belongs has to be provided in the JSON.

HTTP POST to http://host/v1/values

	Depending on the type of the new value, one of the following formats
(all TypeScript interfaces defined in module addValueFormats) has
to be used in order to create a new value:

	addRichtextValueRequest

	addLinkValueRequest

	addIntegerValueRequest

	addDecimalValueRequest

	addBooleanValueRequest

	addUriValueRequest

	addDateValueRequest (see dateString in
basicMessageComponents for the date format)

	addColorValueRequest

	addGeometryValueRequest

	addHierarchicalListValueRequest

	addintervalValueRequest

	addGeonameValueRequest

Response on Value Creation

When a value has been successfully created, Knora sends back a JSON with
the new value’s IRI. The value IRI identifies the value and can be used
to perform future Knora API V1 operations.

The JSON format of the response is described in the TypeScript interface
addValueResponse in module addValueFormats.

Authentication

@@toc

Login and Logout

When a client accesses the /v1/session?login route successfully, it
gets back headers requesting that a cookie is created, which will store
the session token. On all subsequent calls to any route, this session
token needs to be sent with each request. Normally, a web browser does
this automatically, i.e. sends the cookie on every request. The session
token is used by the server to retrieve the user profile. If successful,
the user is deemed authenticated.

To logout the client can call the same route and provide the logout
parameter /v1/session?logout. This will invalidate the session token
and return headers for removing the cookie on the client.

Submitting Credentials

For login, credentials in form of email and password need to be
sent with the request.

There are two possibilities to do so:

	in the URL submitting the parameters email and password
(e.g.,
http://knora-host/v1/resources/resIri?email=userUrlEncodedEmail&password=pw)

	in the HTTP authorization header (HTTP basic
authentication [https://en.wikipedia.org/wiki/Basic_access_authentication])
when doing a HTTP request to the API When using Python’s module
requests, the credentials (email / password) can simply be submitted as a tuple
with each request using the param auth (python
requests [http://docs.python-requests.org/en/master/user/authentication/#basic-authentication]).

An alternative way for accessing all routes is to simply supply the
email and password credentials on each request either as URL
parameters or in the HTTP authorization header.

Checking Credentials

To check the credentials, there is a special route called
/v1/authenticate, which can be used to check if the credentials are
valid.

Usage Scenarios

	Create session by logging-in, send session token on each subsequent
request, and logout when finished.

	Send email/password credentials on every request.

Changing a Value

To add values to an existing resource, the HTTP method PUT
has to be used. Changing values requires authentication since only known
users may change values.

Modifying a Property Value

The request has to be sent to the Knora server using the values path
segment followed by the value’s IRI:

HTTP PUT to http://host/values/valueIRI

The value IRI has to be URL-encoded.

To change an existing value (creating a new version of it), the
value’s current IRI and its new value have to be submitted as JSON in
the HTTP body.

Depending on the type of the new value, one of the following formats
has to be used in order to create a new value (all these TypeScript interfaces are defined in module changeValueFormats):

	changeRichtextValueRequest

	changeLinkValueRequest

	changeIntegerValueRequest

	changeDecimalValueRequest

	changeBooleanValueRequest

	changeUriValueRequest

	changeDateValueRequest

	changeColorValueRequest

	changeGeometryValueRequest

	changeHierarchicalListValueRequest

	changeIntervalValueRequest

	changeGeonameValueRequest

Modifying a File Value

In order to exchange a file value (digital representation of a
resource), the path segment filevalue has to be used. The IRI of the
resource whose file value is to be exchanged has to be appended:

HTTP PUT to http://host/filevalue/resourceIRI

Please note that the resource IRI has to be URL encoded.

There are two ways to change a file of a resource: Either by submitting
directly the binaries of the file in a HTTP Multipart request or by
indicating the location of the file. The two cases are referred to as
non-GUI case and GUI case (TODO: add a link to “Sipi and Knora”).

Including the binaries (non-GUI case)

Here, a HTTP MULTIPART request has to be made simply providing the
binaries (without JSON):

#!/usr/bin/env python3

import requests, json, urllib

the name of the file to be submitted
filename = 'myimage.tif'

a tuple containing the file's name, its binaries and its mimetype
files = {'file': (filename, open(filename, 'rb'), "image/tiff")}

resIri = urllib.parse.quote_plus('http://rdfh.ch/xy')

r = requests.put("http://host/filevalue/" + resIri,
 files=files)

Please note that the file has to be read in binary mode (by default it
would be read in text mode).

Indicating the location of a file (GUI case)

Here, simply the location of the new file has to be submitted as JSON.
The JSON format is described in the TypeScript interface
changeFileValueRequest in module changeValueFormats. The request
header’s content type has to set to application/json.

Response on Value Change

When a value has been successfully changed, Knora sends back a JSON with
the new value’s IRI. The value IRI identifies the value and can be used
to perform future Knora API V1 operations.

The JSON format of the response is described in the TypeScript interface
changeValueResponse in module changeValueFormats.

Deleting Resources and Values

Knora does not actually delete resources or values; it just marks them
as deleted. To mark a resource or value as deleted, you must use the
HTTP method DELETE has to be used. This requires authentication.

Mark a Resource as Deleted

The delete request has to be sent to the Knora server using the
resources path
segment.

HTTP DELETE to http://host/resources/resourceIRI?deleteComment=String

The resource IRI must be URL-encoded. The deleteComment is an optional
comment explaining why the resource is being marked as deleted.

Mark a Value as Deleted

The delete request has to be sent to the Knora server using the values
path segment, providing the valueIRI:

HTTP DELETE to http://host/values/valueIRI?deleteComment=String

The value IRI must be URL-encoded. The deleteComment is an optional
comment explaining why the value is being marked as deleted.

Once a value has been marked as deleted, no new versions of it can be
made.

Knora API v1

@@toc { depth=1 }

@@@ index

	Introduction

	Authentication

	Reading and Searching Resources

	XML to Standoff Mapping

	Adding Resources

	Reading and Searching Resources

	Reading Values

	Adding a Value

	Changing a Value

	Deleting Resources and Values

@@@

Introduction: Using API V1

RESTful API

Knora API V1 is a RESTful API that allows for reading and adding of
resources from and to Knora and changing their values using HTTP
requests. The actual data is submitted as JSON (request and response
format). The diverse HTTP methods are applied according to the
widespread practice of RESTful APIs: GET for reading, POST for adding,
PUT for changing resources and values, and DELETE to delete resources or
values (see
Using HTTP Methods for RESTful Services [http://www.restapitutorial.com/lessons/httpmethods.html]).

Knora IRIs

Every resource that is created or hosted by Knora is identified by a
unique id, a so called Internationalized Resource Identifier (IRI). The
IRI is required for every API operation to identify the resource in
question. A Knora IRI has itself the format of a URL. For some API
operations, the IRI has to be URL-encoded (HTTP GET requests).

Unlike Knora API v2, Knora API v1 uses internal IRIs, i.e. the actual IRIs
that are stored in the triplestore (see @ref:Knora IRIs).

V1 Path Segment

Every request to API V1 includes v1 as a path segment, e.g.
http://host/v1/resources/http%3A%2F%2Frdfh.ch%2Fc5058f3a.
Accordingly, requests to another version of the API will require another
path segment.

Knora API Response Format

In case an API request could be handled successfully, Knora responds
with a 200 HTTP status code. The actual answer from Knora (the
representation of the requested resource or information about the
executed API operation) is sent in the HTTP body, encoded as JSON (using
UTF-8). In this JSON, an API specific status code is sent (member
status).

The JSON formats are formally defined as TypeScript interfaces (located
in salsah/src/typescript_interfaces). Build the HTML documentation of
these interfaces by executing make jsonformat (see docs/Readme.md
for further instructions).

Placeholder host in sample URLs

Please note that all the sample URLs used in this documentation contain
host as a placeholder. The placeholder host has to be replaced by
the actual hostname (and port) of the server the Knora instance is
running on.

Authentication

For all API operations that target at changing resources or values, the
client has to provide credentials (username and password) so that the
API server can authenticate the user making the request. When using the
SALSAH web interface, after logging in a session is established (cookie
based). When using the API with another client application, credentials
can be sent as a part of the HTTP header or as parts of the URL (see
@ref:Authentication in Knora).

Also when reading resources authentication my be needed as resources and
their values may have restricted view permissions.

Reading and Searching Resources

@@toc

In order to get an existing resource, the HTTP method GET has to be
used. The request has to be sent to the Knora server using the
resources path segment (depending on the type of request, this segment
has to be exchanged, see below). Reading resources may require
authentication since some resources may have restricted viewing
permissions.

Get the Representation of a Resource by its IRI

Simple Request of a Resource (full Resource Request)

A resource can be obtained by making a GET request to the API providing
its IRI. Because a Knora IRI has the format of a URL, its IRI has to be
URL encoded.

In order to get the resource with the IRI
http://rdfh.ch/c5058f3a (an incunabula book contained in the
test data), make a HTTP GET request to the resources route (path segment
resources in the API call) and append the URL encoded
IRI:

HTTP GET to http://host/v1/resources/http%3A%2F%2Frdfh.ch%2Fc5058f3a

More formalized, the URL looks like this:

HTTP GET to http://host/v1/resources/resourceIRI

As an answer, the client receives a JSON that represents the
requested resource. It has the following members:

	status: The Knora status code, 0 if everything went well

	userdata: Data about the user that made the request

	resinfo: Data describing the requested resource and its class

	resdata: Short information about the resource and its class
(including information about the given user’s permissions on the
resource)

	incoming: Resources pointing to the requested resource

	props: Properties of the requested resource.

For a complete and more formalized description of a full resource
request, look at the TypeScript interface resourceFullResponse in the
module resourceResponseFormats.

Provide Request Parameters

To make a request more specific, the following parameters can be
appended to the URL (http://www.knora.org/resources/resourceIRI?param1=value1¶m2=value2):

	reqtype=info|context|rights: Specifies the type of
request.

	Setting the parameter’s to value info returns short
information about the requested resource (contains only
resinfo and no properties, see TypeScript interface
resourceInfoResponse in module
resourceResponseFormats).

	Setting the parameter’s value to context returns
context information (resource_context) about the
requested resource: Either the dependent parts of a
compound resource (e.g. pages of a book) or the parent
resource of a dependent resource (e.g. the book a pages
belongs to). By default, a context query does not return
information about the requested resource itself, but
only about its context (see TypeScript interface
resourceContextResponse in module
resourceResponseFormats). See below how to get
additional information about the resource.

	The parameter rights returns only the given user’s
permissions on the requested resource (see TypeScript
interface resourceRightsResponse in module
resourceResponseFormats).

	resinfo=true: Can be used in combination with
reqtype=context: If set, resinfo is added to the response
representing information about the requested resource
(complementary to its context), see TypeScript interface
resourceContextResponse in module resourceResponseFormats.

Obtain an HTML Representation of a Resource

In order to get an HTML representation of a resource (not a JSON), the
path segment resources.html can be
used:

HTTP GET to http://host/v1/resources.html/resourceIRI?reqtype=properties

The request returns the properties of the requested resource as an HTML
document.

Get only the Properties belonging to a Resource

In order to get only the properties of a resource without any other
information, the path segment properties can be used:

HTTP GET to http://host/v1/properties/resourceIRI

The JSON contains just the member properties representing the
requested resource’s properties (see TypeScript interface
resourcePropertiesResponse in module resourceResponseFormats).

Get Information about a Resource Class

Get a Resource Class by its IRI

In order to get information about a resource class, the path segment
resourcetypes can be used. Append the IRI of the resource class to the
URL (e.g. http://www.knora.org/ontology/0803/incunabula#book).

HTTP GET to http://host/v1/resourcetypes/resourceClassIRI

In the JSON, the information about the resource class and all the
property types that it may have are returned. None of
these are actual instances of a property, but only types (see TypeScript
interface resourceTypeResponse in module resourceResponseFormats).

Get all the Property Types of a Resource Class or a Vocabulary

To get a list of all the available property types, the path segment
propertylists can be used. It can be restricted to a certain vocbulary
using the parameter vocabulary or to a certain resource class using
the parameter restype.

returns all the property types for incunabula:page
HTTP GET to http://host/v1/propertylists?restype=resourceClassIRI

returns all the property types for the incunabula vocabulary
HTTP GET to http://host/v1/propertylists?vocabulary=vocabularyIRI

Both of these queries return a list of property types. The default value
for the parameter vocabulary is 0 and means that the resource
classes from all the available vocabularies are returned. See TypeScript
interface propertyTypesInResourceClassResponse in module
resourceResponseFormats.

Get the Resource Classes of a Vocabulary

Resource classes and property types are organized in (project specific)
name spaces, so called vocabularies. In order to get all the resource
classes defined for a specific vocabulary (e.g. incunabula), the
parameter vocabulary has to be used and assigned the vocabulary’s IRI:

HTTP GET to http://host/v1/resourcetypes?vocabulary=vocabularyIRI

This returns all the resource classes defined for the specified
vocabulary and their property types. The default value for the parameter
vocabulary is 0 and means that the resource classes from all the
available vocabularies are returned. See TypeScript interface
resourceTypesInVocabularyResponse in module resourceResponseFormats.

Get all the Vocabularies

To get a list of all available vocabularies, the path segment
vocabularies can be used:

HTTP GET to http://host/v1/vocabularies

The response will list all the available vocabularies. See TypeScript
interface vocabularyResponse in module resourceResponseFormats.

Search for Resources

Search for Resources by their Label

This is a simplified way for searching for resources just by their label.
Search by label automatically adds Lucene operators,
search strings are expected not to contain any characters with a special meaning in
@ref:Lucene Query Parser syntax.

It is a simple string-based method:

HTTP GET to http://host/v1/resources?searchstr=searchValue

Additionally, the following parameters can be appended to the URL (search value is Zeitglöcklein):

	restype_id=resourceClassIRI: This restricts the search to
resources of the specified class (subclasses of that class will
also match). -1 is the default value and means no restriction
to a specific class. If a resource class IRI is specified, it
has to be URL encoded (e.g.
http://www.knora.org/v1/resources?searchstr=Zeitgl%C3%B6cklein&restype_id=http%3A%2F%2Fwww.knora.org%2Fontology%2Fincunabula%23book).

	numprops=Integer: Specifies the number of properties returned
for each resource that was found (sorted by GUI order), e.g.
http://www.knora.org/v1/resources?searchstr=Zeitgl%C3%B6cklein&numprops=4.

	limit=Integer: Limits the amount of results returned (e.g.
http://www.knora.org/v1/resources?searchstr=Zeitgl%C3%B6cklein&limit=1).

The response lists the resources that matched the search criteria (see
TypeScript interface resourceLabelSearchResponse in module
resourceResponseFormats).

Fulltext Search

Knora offers a fulltext search that searches through all textual
representations of values. The search terms have to be URL encoded.
Fulltext search supports the @ref:Lucene Query Parser syntax.
Note that Lucene’s default operator is a logical OR when submitting several search terms.

HTTP GET to http://host/v1/search/searchValue?searchtype=fulltext[&filter_by_restype=resourceClassIRI]
[&filter_by_project=projectIRI][&show_nrows=Integer]{[&start_at=Integer]

The parameter searchtype is required and has to be set to
fulltext. Additionally, these parameters can be set:

	filter_by_restype=resourceClassIRI: restricts the search to
resources of the specified resource class (subclasses of that
class will also match).

	filter_by_project=projectIRI: restricts the search to
resources of the specified project.

	show_nrows=Integer: Indicates how many reults should be
presented on one page. If omitted, the default value 25 is
used.

	start_at=Integer: Used to enable paging and go through all the
results request by request.

The response presents the retrieved resources (according to show_nrows
and start_at) and information about paging. If not all resources could
be presented on one page (nhits is greater than shown_nrows), the
next page can be requested (by increasing start_at by the number of
show_nrows). You can simply go through the elements of paging to
request the single pages one by one. See TypeScript interface
searchResponse in module searchResponseFormats.

Extended Search for Resources

HTTP GET to http://host/v1/search/?searchtype=extended
[&filter_by_restype=resourceClassIRI][&filter_by_project=projectIRI][&filter_by_owner=userIRI]
(&property_id=propertyTypeIRI&compop=comparisonOperator&searchval=searchValue)+
[&show_nrows=Integer][&start_at=Integer]

The parameter searchtype is required and has to be set to
extended. An extended search requires at least one set of
parameters consisting of:

	property_id=propertyTypeIRI: the property the resource has to
have (subproperties of that property will also match).

	compop=comparisonOperator: the comparison operator to be used
to match between the resource’s property value and the search
term.

	searchval=searchTerm: the search value to look for.

You can also provide several of these sets to make your query more
specific.

The following table indicates the possible combinations of value types
and comparison
operators:

Value Type	Comparison Operator
—————-	—————————————————–
Date Value	EQ, !EQ, GT, GT_EQ, LT, LT_EQ, EXISTS
Integer Value	EQ, !EQ, GT, GT_EQ, LT, LT_EQ, EXISTS
Float Value	EQ, !EQ, GT, GT_EQ, LT, LT_EQ, EXISTS
Text Value	MATCH_BOOLEAN, MATCH, EQ, !EQ, LIKE, !LIKE, EXISTS
Geometry Value	EXISTS
Resource Pointer	EQ, EXISTS
Color Value	EQ, EXISTS
List Value	EQ, EXISTS
Boolean Value	EQ, !EQ, EXISTS

Explanation of the comparison operators:

	EQ: checks if a resource’s value equals the search value. In
case of a text value type, it checks for identity of the strings
compared. In case of a date value type, equality is given if the
dates overlap in any way. Since dates are internally always
treated as periods, equality is given if a date value’s period
ends after or equals the start of the defined period and a date
value’s period starts before or equals the end of the defined
period.

	!EQ: checks if a resource’s value does not equal the search
value. In case of a text value type, it checks if the compared
strings are different. In case of a date value type, inequality
is given if the dates do not overlap in any way, meaning that a
date starts after the end of the defined period or ends before
the beginning of the defined period (dates are internally always
treated as periods, see above).

	GT: checks if a resource’s value is greater than the search
value. In case of a date value type, it assures that a period
begins after the indicated period’s end.

	GT_EQ: checks if a resource’s value equals or is greater
than the search value. In case of a date value type, it assures
that the periods overlap in any way (see EQ) or that the
period starts after the indicated period’s end (see GT).

	LT: checks if a resource’s value is lower than the search
value. In case of a date value type, it assures that a period
ends before the indicated period’s start.

	LT_EQ: checks if a resource’s value equals or is lower than
the search value. In case of a date value type, it assures that
the periods overlap in any way (see EQ) or that the period
ends before the indicated period’s start (see LT).

	EXISTS: checks if an instance of the indicated property type
exists for a resource. Please always provide an empty search
value when using EXISTS: “searchval=”. Otherwise, the query
syntax rules would be violated.

	MATCH: checks if a resource’s text value matches the search
value. The behaviour depends on the used triplestore’s full text
index, see @ref:Lucene.

	LIKE: checks if the search value is contained in a resource’s
text value.

	!LIKE: checks if the search value is not contained in a
resource’s text value.

	MATCH_BOOLEAN: checks if a resource’s text value matches the
provided list of positive (exist) and negative (do not exist)
terms. The list takes this form: ([+-]term\s)+.

Additionally, these parameters can be set:

	filter_by_restype=resourceClassIRI: restricts the search to
resources of the specified resource class (subclasses of that
class will also match).

	filter_by_project=projectIRI: restricts the search to
resources of the specified project.

	filter_by_owner: restricts the search to resources owned by
the specified user.

	show_nrows=Integer: Indicates how many reults should be
presented on one page. If omitted, the default value 25 is
used.

	start_at=Integer: Used to enable paging and go through all the
results request by request.

Some sample searches:

	http://localhost:3333/v1/search/?searchtype=extended&filter_by_restype=http%3A%2F%2Fwww.knora.org%2Fontology%2Fincunabula%23book&property_id=http%3A%2F%2Fwww.knora.org%2Fontology%2Fincunabula%23title&compop=!EQ&searchval=Zeitgl%C3%B6cklein%20des%20Lebens%20und%20Leidens%20Christi:
searches for books that have a title that does not equal
“Zeitglöcklein des Lebens und Leidens
Christi”.

	http://www.knora.org/v1/search/?searchtype=extended&filter_by_restype=http%3A%2F%2Fwww.knora.org%2Fontology%2Fincunabula%23book&property_id=http%3A%2F%2Fwww.knora.org%2Fontology%2Fincunabula%23title&compop=MATCH&searchval=Zeitgl%C3%B6cklein&property_id=http%3A%2F%2Fwww.knora.org%2Fontology%2Fincunabula%23pubdate&compop=EQ&searchval=JULIAN:1490:
searches for resources of type incunabula:book whose titles
match “Zeitglöcklein” and were published in the year 1490
(according to the Julian calendar).

The response presents the retrieved resources (according to show_nrows
and start_at) and information about paging. If not all resources could
be presented on one page (nhits is greater than shown_nrows), the
next page can be requested (by increasing start_at by the number of
show_nrows). You can simply go through the elements of paging to
request the single pages one by one. See the TypeScript interface
searchResponse in module searchResponseFormats.

Get a Graph of Resources

The path segment graphdata returns a graph of resources that are
reachable via links to or from an initial resource.

HTTP GET to http://host/v1/graphdata/resourceIRI?depth=Integer

The parameter depth specifies the maximum depth of the graph, and
defaults to 4. If depth is 1, the operation will return only the
initial resource and any resources that are directly linked to or from
it.

The graph includes any link that is a subproperty of
knora-base:hasLinkTo, except for links that are subproperties of
knora-base:isPartOf. Specifically, if resource R1 has a link that is
a subproperty of knora-base:isPartOf pointing to resource R2, no
link from R1 to R2 is included in the graph.

The response represents the graph as a list of nodes (resources) and a
list of edges (links). For details, see the TypeScript interface
graphDataResponse in module graphDataResponseFormats.

Get Hierarchical Lists

The knora-base ontology allows for the definition of hierarchical lists.
These can be queried by providing the IRI of the root node. Selections
are hierarchical list that are just one level deep. Internally, they are
represented as hierarchical lists.

You can get a hierarchical by using the path segment hlists and
appending the hierarchical list’s IRI (URL encoded):

HTTP GET to http://host/v1/hlists/rootNodeIRI

The response shows all of the list nodes that are element of the
requested hierarchical list as a tree structure. See TypeScript
interface hierarchicalListResponse in module
hierarchicalListResponseFormats.

For each node, the full path leading to it from the top level can be
requested by making a query providing the node’s IRI and setting the
param reqtype=node:

HTTP GET to http://host/v1/hlists/nodeIri?reqtype=node

The response presents the full path to the current node. See the TypeScript
interface nodePathResponse in module hierarchicalListResponseFormats.

Reading Values

In order to get an existing value, the HTTP method GET has to be used.
The request has to be sent to the Knora server using the values path
segment. Reading values may require authentication since some resources
may have restricted viewing permissions.

Reading a Value

The representation of a value can be obtained by making a GET request
providing the value’s IRI:

HTTP GET to http://host/v1/values/valueIRI

In the response, the value’s type and value are returned (see TypeScript
interface valueResponse in module valueResponseFormats).

Getting a Value’s Version History

In order to get the history of a value (its current and previous
versions), the IRI of the resource it belongs to, the IRI of the
property type that connects the resource to the value, and its
current value IRI have to be submitted. Each of these elements is
appended to the URL and separated by a slash. Please note that all of
these have to be URL encoded.

Additionally to values, the path segment history has to be used:

HTTP GET to http://host/v1/values/history/resourceIRI/propertyTypeIRI/valueIRI

In the response, the value’s versions returned (see TypeScript interface
valueVersionsResponse in module valueResponseFormats).

Getting a Linking Value

In order to get information about a link between two resources, the path
segment links has to be used. The IRI of the source object, the IRI of
the property type linking the the two objects, and the IRI of the target
object have to be provided in the URL separated by slashes. Each of
these has to be URL
encoded.

HTTP GET to http://host/links/sourceObjectIRI/linkingPropertyIRI/targetObjectIRI

In the response, information about the link is returned such as a
reference count indicating how many links of the specified direction
(source to target) and type (property) between the two objects exist
(see TypeScript interface linkResponse in module
valueResponseFormats).

XML to Standoff Mapping in API v1

@@toc

The Knora Standard Mapping

Description

A mapping allows for the conversion of XML to standoff representation in
RDF and back. In order to create a TextValue with markup, the text has
to be provided in XML format, along with the IRI of the mapping that
will be used to convert the markup to standoff. However, a mapping is
only needed if a TextValue with markup should be created. If a text has
no markup, it is submitted as a mere sequence of characters.

The two cases are described in the TypeScript interfaces simpletext
and richtext in module basicMessageComponents.

Knora offers a standard mapping with the IRI
http://rdfh.ch/standoff/mappings/StandardMapping. The
standard mapping covers the HTML elements and attributes supported by
the GUI’s text editor, CKEditor [https://ckeditor.com/]. (Please note that the HTML has to be
encoded in strict XML syntax. CKeditor offers the possibility to define filter rules.
They should reflect the elements supported by the mapping; see jquery.htmleditor.js.)
The standard mapping contains the following elements and attributes that are mapped to standoff classes
and properties defined in the ontology:

	<text> → standoff:StandoffRootTag

	<p> → standoff:StandoffParagraphTag

	 → standoff:StandoffItalicTag

	 → standoff:StandoffBoldTag

	<u> → standoff:StandoffUnderlineTag

	<sub> → standoff:StandoffSubscriptTag

	<sup> → standoff:StandoffSuperscriptTag

	<strike> → standoff:StandoffStrikeTag

	 → knora-base:StandoffUriTag

	 → knora-base:StandoffLinkTag

	 → knora-base:StandoffInternalReferenceTag

	<h1> to <h6> → standoff:StandoffHeader1Tag to standoff:StandoffHeader6Tag

	 → standoff:StandoffOrderedListTag

	 → standoff:StandoffUnrderedListTag

	 → standoff:StandoffListElementTag

	<tbody> → standoff:StandoffTableBodyTag

	<table> → standoff:StandoffTableTag

	<tr> → standoff:StandoffTableRowTag

	<td> → standoff:StandoffTableCellTag

	
 → standoff:StandoffBrTag

	<hr> → standoff:StandoffLineTag

	<pre> → standoff:StandoffPreTag

	<cite> → standoff:StandoffCiteTag

	<blockquote> → standoff:StandoffBlockquoteTag

	<code> → standoff:StandoffCodeTag

The HTML produced by CKEditor is wrapped in an XML doctype and a pair of
root tags <text>...</text> and then sent to Knora. The XML sent to the
GUI by Knora is unwrapped accordingly (see jquery.htmleditor.js).
Although the GUI supports HTML5, it is treated as if it was XHTML in
strict XML notation.

Maintenance

The standard mapping definition can be found at
webapi/_test_data/test_route/texts/mappingForStandardHTML.xml. It was
used to generate the default mapping, distributed as
knora-ontologies/standoff-data.ttl and that is loaded at a Knora
installation. It should be used to re-generate it, whenever we want to
amend or extend it.

Note: once the mapping has been generated, one has to rework the
resources’ UUID in order to maintain backward compatibility.

Creating a custom Mapping

The Knora standard mapping only supports a few HTML tags. In order to
submit more complex XML markup to Knora, a custom mapping has to be
created first. Basically, a mapping expresses the relations between XML
elements and attributes and their corresponding standoff classes and
properties. The relations expressed in a mapping are one-to-one
relations, so the XML can be recreated from the data in RDF. However,
since HTML offers a very limited set of elements, Knora mappings support
the combination of element names and classes. In this way, the same
element can be used several times in combination with another classname
(please note that <a> without a class is a mere hyperlink whereas is an internal link/standoff link).

With a mapping, a default XSL transformation may be provided to
transform the XML to HTML before sending it back to the client. This is
useful when the client is a web-browser expecting HTML (instead of XML).

Basic Structure of a Mapping

The mapping is written in XML itself (for a formal description, see
webapi/src/resources/mappingXMLToStandoff.xsd). It has the following
structure (the indentation corresponds to the nesting in XML):

	<mapping>: the root element

	<defaultXSLTransformation> (optional): the Iri of the
default XSL transformation to be applied to the XML when
reading it back from Knora. The XSL transformation is
expected to produce HTML. If given, the Iri has to refer to
a resource of type knora-base:XSLTransformation.

	<mappingElement>: an element of the mapping (at least
one)

	<tag>: information about the XML element that
is mapped to a standoff class

	<name>: name of the XML element

	<class>: value of the class attribute of
the XML element, if any. If the element has
no class attribute, the keyword noClass
has to be used.

	<namespace>: the namespace the XML element
belongs to, if any. If the element does not
belong to a namespace, the keyword
noNamespace has to be used.

	<separatesWords>: a Boolean value
indicating whether this tag separates words
in the text. Once an XML document is
converted to RDF-standoff the markup is
stripped from the text, possibly leading to
continuous text that has been separated by
tags before. For structural tags like
paragraphs etc., <separatesWords> can be
set to true in which case a special
separator is inserted in the the text in the
RDF representation. In this way, words stay
separated and are represented in the
fulltext index as such.

	<standoffClass>: information about the
standoff class the XML element is mapped to

	<classIri>: Iri of the standoff class the
XML element is mapped to

	<attributes>: XML attributes to be
mapped to standoff properties (other
than id or class), if any

	<attribute>: an XML attribute
to be mapped to a standoff
property, may be repeated

	<attributeName>: the name
of the XML attribute

	<namespace>: the namespace
the attribute belongs to, if
any. If the attribute does
not belong to a namespace,
the keyword noNamespace
has to be used.

	<propertyIri>: the Iri of
the standoff property the
XML attribute is mapped to.

	<datatype>: the data type of the
standoff class, if any.

	<type>: the Iri of the data type
standoff class

	<attributeName>: the name of the
attribute holding the typed value in
the expected Knora standard format

XML structure of a mapping:

<?xml version="1.0" encoding="UTF-8"?>
<mapping>
 <defaultXSLTransformation>Iri of a knora-base:XSLTransformation</defaultXSLTransformation>
 <mappingElement>
 <tag>
 <name>XML element name</name>
 <class>XML class name or "noClass"</class>
 <namespace>XML namespace or "noNamespace"</namespace>
 <separatesWords>true or false</separatesWords>
 </tag>
 <standoffClass>
 <classIri>standoff class Iri</classIri>
 <attributes>
 <attribute>
 <attributeName>XML attribute name</attributeName>
 <namespace>XML namespace or "noNamespace"</namespace>
 <propertyIri>standoff property Iri</propertyIri>
 </attribute>
 </attributes>
 <datatype>
 <type>standoff data type class</type>
 <attributeName>XML attribute with the typed value</attributeName>
 </datatype>
 </standoffClass>
 </mappingElement>
 <mappingElement>
 ...
 </mappingElement>
</mapping>

Please note that the absence of an XML namespace and/or a class have to
be explicitly stated using the keywords noNamespace and
noClass. (This is because we use XML Schema validation to ensure the one-to-one
relations between XML elements and standoff classes. XML Schema validation’s unique checks
do not support optional values.)

id and class Attributes

The id and class attributes are supported by default and do not have
to be included in the mapping like other attributes. The id attribute
identifies an element and must be unique in the document. id is an
optional attribute. The class attribute allows for the reuse of an
element in the mapping, i.e. the same element can be combined with
different class names and mapped to different standoff classes (mapping
element <class> in <tag>).

Respecting Cardinalities

A mapping from XML elements and attributes to standoff classes and
standoff properties must respect the cardinalities defined in the
ontology for those very standoff classes. If an XML element is mapped to
a certain standoff class and this class requires a standoff property, an
attribute must be defined for the XML element mapping to that very
standoff property. Equally, all mappings for attributes of an XML
element must have corresponding cardinalities for standoff properties
defined for the standoff class the XML element maps to.

However, since an XML attribute may occur once at maximum, it makes
sense to make the corresponding standoff property required
(owl:cardinality of one) in the ontology or optional
(owl:maxCardinality of one), but not allowing it more than once.

Standoff Data Types

Knora allows the use of all its value types as standoff data types
(defined in knora-base.ttl):

	knora-base:StandoffLinkTag: Represents a reference to a Knora
resource (the IRI of the target resource must be submitted in the
data type attribute).

	knora-base:StandoffInternalReferenceTag: Represents an internal
reference inside a document (the id of the target element inside the
same document must be indicated in the data type attribute); see
Internal References in an XML Document.

	knora-base:StandoffUriTag: Represents a reference to a URI (the
URI of the target resource must be submitted in the data type
attribute).

	knora-base:StandoffDateTag: Represents a date (a Knora date
string must be submitted in the data type attribute, e.g.
GREGORIAN:2017-01-27).

	knora-base:StandoffColorTag: Represents a color (a hexadecimal
RGB color string must be submitted in the data type attribute, e.g.
#0000FF).

	knora-base:StandoffIntegerTag: Represents an integer (the integer
must be submitted in the data type attribute).

	knora-base:StandoffDecimalTag: Represents a number with fractions
(the decimal number must be submitted in the data type attribute,
e.g. 1.1).

	knora-base:StandoffIntervalTag: Represents an interval (two
decimal numbers separated with a comma must be submitted in the data
type attribute, e.g. 1.1,2.2).

	knora-base:StandoffBooleanTag: Represents a Boolean value (true
or false must be submitted in the data type attribute).

The basic idea is that parts of a text can be marked up in a way that
allows using Knora’s built-in data types. In order to do so, the typed
values have to be provided in a standardized way in an attribute that
has to be defined in the mapping.

Data type standoff classes are standoff classes with predefined
properties (e.g., a knora-base:StandoffLinkTag has a
knora-base:standoffTagHasLink and a knora-base:StandoffIntegerTag
has a knora-base:valueHasInteger). Please note the data type standoff
classes can not be combined, i.e. a standoff class can only be the
subclass of one data type standoff class. However, standoff data
type classes can be subclassed and extended further by assigning
properties to them (see below).

The following simple mapping illustrates this principle:

<?xml version="1.0" encoding="UTF-8"?>
<mapping>
 <mappingElement>
 <tag>
 <name>text</name>
 <class>noClass</class>
 <namespace>noNamespace</namespace>
 <separatesWords>false</separatesWords>
 </tag>
 <standoffClass>
 <classIri>http://www.knora.org/ontology/standoff#StandoffRootTag</classIri>
 </standoffClass>
 </mappingElement>

 <mappingElement>
 <tag>
 <name>mydate</name>
 <class>noClass</class>
 <namespace>noNamespace</namespace>
 <separatesWords>false</separatesWords>
 </tag>
 <standoffClass>
 <classIri>http://www.knora.org/ontology/0001/anything#StandoffEventTag</classIri>
 <attributes>
 <attribute>
 <attributeName>description</attributeName>
 <namespace>noNamespace</namespace>
 <propertyIri>http://www.knora.org/ontology/0001/anything#standoffEventTagHasDescription</propertyIri>
 </attribute>
 </attributes>
 <datatype>
 <type>http://www.knora.org/ontology/knora-base#StandoffDateTag</type>
 <attributeName>knoraDate</attributeName>
 </datatype>
 </standoffClass>
 </mappingElement>
</mapping>

<datatype> must hold the Iri of a standoff data type class (see
list above). The <classIri> must be a subclass of this type or this
type itself (the latter is probably not recommendable since semantics
are missing: what is the meaning of the date?). In the example above,
the standoff class is anything:StandoffEventTag which has the
following definition in the ontology anything-onto.ttl:

anything:StandoffEventTag rdf:type owl:Class ;

 rdfs:subClassOf knora-base:StandoffDateTag,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :standoffEventTagHasDescription ;
 owl:cardinality "1"^^xsd:nonNegativeInteger
] ;

 rdfs:label "Represents an event in a TextValue"@en ;

 rdfs:comment """Represents an event in a TextValue"""@en .

anything:StandoffEventTag is a subclass of
knora-base:StandoffDateTag and therefore has the data type date. It
also requires the standoff property
anything:standoffEventTagHasDescription which is defined as an
attribute in the mapping.

Once the mapping has been created, an XML like the following could be
sent to Knora and converted to standoff:

<?xml version="1.0" encoding="UTF-8"?>
<text>
 We had a party on <mydate description="new year" knoraDate="GREGORIAN:2016-12-31">New Year's Eve</mydate>. It was a lot of fun.
</text>

The attribute holds the date in the format of a Knora date string (the
format is also documented in the typescript type alias dateString in
module basicMessageComponents. There you will also find documentation
about the other types like color etc.). Knora date strings have this
format: GREGORIAN|JULIAN):YYYY[-MM[-DD]][:YYYY[-MM[-DD]]]. This allows
for different formats as well as for imprecision and periods. Intervals
are submitted as one attribute in the following format:
interval-attribute="1.0,2.0" (two decimal numbers separated with a
comma).

You will find a sample mapping with all the data types and a sample XML
file in the the test data:
webapi/_test_data/test_route/texts/mappingForHTML.xml and
webapi/_test_data/test_route/texts/HTML.xml.

Internal References in an XML Document

Internal references inside an XML document can be represented using the
data type standoff class knora-base:StandoffInternalReferenceTag or a
subclass of it. This class has a standoff property that points to a
standoff node representing the target XML element when converted to RDF.

The following example shows the definition of a mapping element for an
internal reference (for reasons of simplicity, only the mapping element
for the element is question is depicted):

<?xml version="1.0" encoding="UTF-8"?>
<mappingElement>
 <tag>
 <name>ref</name>
 <class>noClass</class>
 <namespace>noNamespace</namespace>
 <separatesWords>false</separatesWords>
 </tag>
 <standoffClass>
 <classIri>http://www.knora.org/ontology/knora-base#StandoffInternalReferenceTag</classIri>
 <datatype>
 <type>http://www.knora.org/ontology/knora-base#StandoffInternalReferenceTag</type>
 <attributeName>internalRef</attributeName>
 </datatype>
 </standoffClass>
</mappingElement>

Now, an internal reference to an element in the same document can be
made that will be converted to a pointer in RDF:

<?xml version="1.0" encoding="UTF-8"?>
<text>
 This is an <sample id="1">element</sample> and here is a reference to <ref internalRef="#1">it</ref>.
</text>

An internal reference in XML has to start with a # followed by the
value of the id attribute of the element referred to.

Predefined Standoff Classes and Properties

The standoff ontology standoff-onto.ttl offers a set of predefined
standoff classes that can be used in a custom mapping like the
following:

<?xml version="1.0" encoding="UTF-8"?>
<mapping>
 <mappingElement>
 <tag>
 <name>myDoc</name>
 <class>noClass</class>
 <namespace>noNamespace</namespace>
 <separatesWords>false</separatesWords>
 </tag>
 <standoffClass>
 <classIri>http://www.knora.org/ontology/standoff#StandoffRootTag</classIri>
 <attributes>
 <attribute>
 <attributeName>documentType</attributeName>
 <namespace>noNamespace</namespace>
 <propertyIri>http://www.knora.org/ontology/standoff#standoffRootTagHasDocumentType</propertyIri>
 </attribute>
 </attributes>
 </standoffClass>
 </mappingElement>

 <mappingElement>
 <tag>
 <name>p</name>
 <class>noClass</class>
 <namespace>noNamespace</namespace>
 <separatesWords>true</separatesWords>
 </tag>
 <standoffClass>
 <classIri>http://www.knora.org/ontology/standoff#StandoffParagraphTag</classIri>
 </standoffClass>
 </mappingElement>

 <mappingElement>
 <tag>
 <name>i</name>
 <class>noClass</class>
 <namespace>noNamespace</namespace>
 <separatesWords>false</separatesWords>
 </tag>
 <standoffClass>
 <classIri>http://www.knora.org/ontology/standoff#StandoffItalicTag</classIri>
 </standoffClass>
 </mappingElement>
</mapping>

Predefined standoff classes may be used by various projects, each
providing a custom mapping to be able to recreate the original XML from
RDF. Predefined standoff classes may also be inherited and extended in
project specific ontologies.

The mapping above allows for an XML like this:

<?xml version="1.0" encoding="UTF-8"?>
<myDoc documentType="letter">
 <p>
 This my text that is <i>very</i> interesting.
 </p>
 <p>
 And here it goes on.
 </p>
</myDoc>

Respecting Property Types

When mapping XML attributes to standoff properties, attention has to be
paid to the properties’ object constraints.

In the ontology, standoff property literals may have one of the
following knora-base:objectDatatypeConstraint:

	xsd:string

	xsd:integer

	xsd:boolean

	xsd:decimal

	xsd:anyURI

In XML, all attribute values are submitted as strings. However, these
string representations need to be convertible to the types defined in
the ontology. If they are not, the request will be rejected. It is
recommended to enforce types on attributes by applying XML Schema
validations (restrictions).

Links (object property) to a knora-base:Resource can be represented
using the data type standoff class knora-base:StandoffLinkTag,
internal links using the data type standoff class
knora-base:StandoffInternalReferenceTag.

Validating a Mapping and sending it to Knora

A mapping can be validated before sending it to Knora with the following
XML Schema file: webapi/src/resources/mappingXMLToStandoff.xsd. Any
mapping that does not conform to this XML Schema file will be rejected
by Knora.

The mapping has to be sent as a multipart request to the standoff route
using the path segment mapping:

HTTP POST http://host/v1/mapping

The multipart request consists of two named parts:

"json":

 {
 "project_id": "projectIRI",
 "label": "my mapping",
 "mappingName": "MappingNameSegment"
 }

"xml":

 <?xml version="1.0" encoding="UTF-8"?>
 <mapping>
 ...
 </mapping>

A successful response returns the Iri of the mapping. However, the Iri
of a mapping is predictable: it consists of the project Iri followed by
/mappings/ and the mappingName submitted in the JSON (if the name
already exists, the request will be rejected). Once created, a mapping
can be used to create TextValues in Knora. The formats are documented in
the typescript interfaces addMappingRequest and addMappingResponse
in module mappingFormats

Authentication

@@toc

Access to the Knora API can for certain operations require a user to authenticate.
Authentication can be performed in two ways:

	By providing password credentials, which are a combination of a identifier and
password. The user identifier can be one of the following:

	the user’s IRI,

	the user’s Email, or

	the user’s Username.

	By providing an access token

Submitting Password Credentials

When accessing any route and password credentials would need to be sent,
we support two options to do so:

	in the URL submitting the parameters iri / email / username and password
(e.g., http://knora-host/v1/resources/resIri?email=userUrlEncodedIdentifier&password=pw), and

	in the HTTP header (HTTP basic
authentication [https://en.wikipedia.org/wiki/Basic_access_authentication]), where the
identifier can be the user’s email (IRI and username not supported).

When using Python’s module requests, the credentials can simply be submitted as a tuple with
each request using the param auth (python requests [http://docs.python-requests.org/en/master/user/authentication/#basic-authentication]).

Access Token / Session / Login and Logout

A client can generate an access token by sending a POST request (e.g., {"identifier_type":"identifier_value", "password":"password_value"}) to the /v2/authentication route with
identifier and password in the body. The identifier_type can be iri, email, or username.
If the credentials are valid, a JSON WEB Token [https://jwt.io] (JWT) will be sent back in the
response (e.g., {"token": "eyJ0eXAiOiJ..."}). Additionally, for web browser clients a session cookie
containing the JWT token is also created, containing KnoraAuthentication=eyJ0eXAiOiJ....

When accessing any route, the access token would need to be supplied, we support three options to do so:

	the session cookie,

	in the URL submitting the parameter token (e.g., http://knora-host/v1/resources/resIri?token=1234567890), and

	in the HTTP authorization header with the @extrefHTTP bearer scheme.

If the token is successfully validated, then the user is deemed authenticated.

To logout, the client sends a DELETE request to the same route /v2/authentication and
the access token in one of the three described ways. This will invalidate the access token,
thus not allowing further request that would supply the invalidated token.

Checking Credentials

To check the credentials, send a GET request to /v2/authentication with the credentials
supplied as URL parameters or HTTP authentication headers as described before.

Usage Scenarios

	Create token by logging-in, send token on each subsequent request, and logout when finished.

	Send email/password credentials on every request.

Editing Resources

@@toc

Creating a Resource

To create a new resources, use this route:

HTTP POST to http://host/v2/resources

The body of the request is a JSON-LD document in the
@ref:complex API schema, specifying the resource’s IRI, type,
and rdfs:label, along with its Knora resource properties and their values. The representation of the
resource is the same as when it is returned in a GET request, except that its IRI and
knora-api:attachedToUser, and those of its values, are not given. The format of the values submitted
is described in @ref:Editing Values. If there are multiple values for a property,
these must be given in an array.

For example, here is a request to create a resource with various value types:

{
 "@type" : "anything:Thing",
 "anything:hasBoolean" : {
 "@type" : "knora-api:BooleanValue",
 "knora-api:booleanValueAsBoolean" : true
 },
 "anything:hasColor" : {
 "@type" : "knora-api:ColorValue",
 "knora-api:colorValueAsColor" : "#ff3333"
 },
 "anything:hasDate" : {
 "@type" : "knora-api:DateValue",
 "knora-api:dateValueHasCalendar" : "GREGORIAN",
 "knora-api:dateValueHasEndEra" : "CE",
 "knora-api:dateValueHasEndYear" : 1489,
 "knora-api:dateValueHasStartEra" : "CE",
 "knora-api:dateValueHasStartYear" : 1489
 },
 "anything:hasDecimal" : {
 "@type" : "knora-api:DecimalValue",
 "knora-api:decimalValueAsDecimal" : {
 "@type" : "xsd:decimal",
 "@value" : "100000000000000.000000000000001"
 }
 },
 "anything:hasGeometry" : {
 "@type" : "knora-api:GeomValue",
 "knora-api:geometryValueAsGeometry" : "{\"status\":\"active\",\"lineColor\":\"#ff3333\",\"lineWidth\":2,\"points\":[{\"x\":0.08098591549295775,\"y\":0.16741071428571427},{\"x\":0.7394366197183099,\"y\":0.7299107142857143}],\"type\":\"rectangle\",\"original_index\":0}"
 },
 "anything:hasGeoname" : {
 "@type" : "knora-api:GeonameValue",
 "knora-api:geonameValueAsGeonameCode" : "2661604"
 },
 "anything:hasInteger" : [{
 "@type" : "knora-api:IntValue",
 "knora-api:hasPermissions" : "CR knora-admin:Creator|V http://rdfh.ch/groups/0001/thing-searcher",
 "knora-api:intValueAsInt" : 5,
 "knora-api:valueHasComment" : "this is the number five"
 }, {
 "@type" : "knora-api:IntValue",
 "knora-api:intValueAsInt" : 6
 }],
 "anything:hasInterval" : {
 "@type" : "knora-api:IntervalValue",
 "knora-api:intervalValueHasEnd" : {
 "@type" : "xsd:decimal",
 "@value" : "3.4"
 },
 "knora-api:intervalValueHasStart" : {
 "@type" : "xsd:decimal",
 "@value" : "1.2"
 }
 },
 "anything:hasListItem" : {
 "@type" : "knora-api:ListValue",
 "knora-api:listValueAsListNode" : {
 "@id" : "http://rdfh.ch/lists/0001/treeList03"
 }
 },
 "anything:hasOtherThingValue" : {
 "@type" : "knora-api:LinkValue",
 "knora-api:linkValueHasTargetIri" : {
 "@id" : "http://rdfh.ch/0001/a-thing"
 }
 },
 "anything:hasRichtext" : {
 "@type" : "knora-api:TextValue",
 "knora-api:textValueAsXml" : "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<text><p>this is text</p> with standoff</text>",
 "knora-api:textValueHasMapping" : {
 "@id" : "http://rdfh.ch/standoff/mappings/StandardMapping"
 }
 },
 "anything:hasText" : {
 "@type" : "knora-api:TextValue",
 "knora-api:valueAsString" : "this is text without standoff"
 },
 "anything:hasUri" : {
 "@type" : "knora-api:UriValue",
 "knora-api:uriValueAsUri" : {
 "@type" : "xsd:anyURI",
 "@value" : "https://www.knora.org"
 }
 },
 "knora-api:attachedToProject" : {
 "@id" : "http://rdfh.ch/projects/0001"
 },
 "rdfs:label" : "test thing",
 "@context" : {
 "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#",
 "anything" : "http://0.0.0.0:3333/ontology/0001/anything/v2#"
 }
}

Permissions for the new resource can be given by adding knora-api:hasPermissions, a custom creation date
can be specified by adding knora-api:creationDate
(an xsd:dateTimeStamp [https://www.w3.org/TR/xmlschema11-2/#dateTimeStamp]), and the
resource’s creator can be specfied by adding knora-api:attachedToUser. For example:

{
 "@type" : "anything:Thing",
 "anything:hasBoolean" : {
 "@type" : "knora-api:BooleanValue",
 "knora-api:booleanValueAsBoolean" : true
 },
 "knora-api:attachedToProject" : {
 "@id" : "http://rdfh.ch/projects/0001"
 },
 "knora-api:attachedToUser" : {
 "@id" : "http://rdfh.ch/users/9XBCrDV3SRa7kS1WwynB4Q"
 },
 "rdfs:label" : "test thing",
 "knora-api:hasPermissions" : "CR knora-admin:Creator|V http://rdfh.ch/groups/0001/thing-searcher",
 "knora-api:creationDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "2019-01-09T15:45:54.502951Z"
 }
 "@context" : {
 "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#",
 "anything" : "http://0.0.0.0:3333/ontology/0001/anything/v2#"
 }
}

The format of the object of knora-api:hasPermissions is described in
@ref:Permissions.

If permissions are not given, configurable default permissions are used
(see @ref:Default Object Access Permissions).

To create a resource, the user must have permission to create resources
of that class in that project.

The predicate knora-api:attachedToUser can be used to specify a creator other
than the requesting user only if the requesting user is an administrator of the
project or a system administrator. The specified creator must also
have permission to create resources of that class in that project.

The response is a JSON-LD document containing a
@ref:preview
of the resource.

Modifying a Resource’s Values

See @ref:Editing Values.

Modifying a Resource’s Metadata

You can modify the following metadata attached to a resource:

	label

	permissions

	last modification date

To do this, use this route:

HTTP PUT to http://host/v2/resources

The request body is a JSON-LD object containing the following information about the resource:

	@id: the resource’s IRI

	@type: the resource’s class IRI

	knora-api:lastModificationDate: an xsd:dateTimeStamp representing the last modification date that is currently attached to the resource, if any. This is used to make sure that the resource has not been modified by someone else since you last read it.

The submitted JSON-LD object must also contain one or more of the following predicates, representing the metadata you want to change:

	rdfs:label: a string

	knora-api:hasPermissions, in the format described in @ref:Permissions

	knora-api:newModificationDate: an xsd:dateTimeStamp [https://www.w3.org/TR/xmlschema11-2/#dateTimeStamp].

Here is an example:

{
 "@id" : "http://rdfh.ch/0001/a-thing",
 "@type" : "anything:Thing",
 "rdfs:label" : "this is the new label",
 "knora-api:hasPermissions" : "CR knora-admin:Creator|M knora-admin:ProjectMember|V knora-admin:ProjectMember",
 "knora-api:lastModificationDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "2017-11-20T15:55:17Z"
 }
 "knora-api:newModificationDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "2018-12-21T16:56:18Z"
 },
 "@context" : {
 "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#",
 "anything" : "http://0.0.0.0:3333/ontology/0001/anything/v2#"
 }
}

If you submit a knora-api:lastModificationDate that is different from the resource’s actual last modification
date, you will get an HTTP 409 (Conflict) error.

If you submit a knora-api:newModificationDate that is earlier than the resource’s knora-api:lastModificationDate,
you will get an HTTP 400 (Bad Request) error.

A successful response is an HTTP 200 (OK) status containing a confirmation message.

Deleting a Resource

Knora does not normally delete resources; instead, it marks them as deleted, which means
that they do not appear in normal query results.

To mark a resource as deleted, use this route:

HTTP POST to http://host/v2/resources/delete

The request body is a JSON-LD object containing the following information about the resource:

	@id: the resource’s IRI

	@type: the resource’s class IRI

	knora-api:lastModificationDate: an xsd:dateTimeStamp representing the last modification date that is currently attached to the resource, if any. This is used to make sure that the resource has not been modified by someone else since you last read it.

{
 "@id" : "http://rdfh.ch/0001/a-thing",
 "@type" : "anything:Thing",
 "knora-api:lastModificationDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "2019-02-05T17:05:35.776747Z"
 },
 "knora-api:deleteComment" : "This resource was created by mistake.",
 "@context" : {
 "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#",
 "anything" : "http://0.0.0.0:3333/ontology/0001/anything/v2#"
 }
}

The optional property knora-api:deleteComment specifies a comment to be attached to the
resource, explaining why it has been marked as deleted.

The response is a JSON-LD document containing the predicate knora-api:result
with a confirmation message.

Erasing a Resource from the Triplestore

Normally, resources are not actually removed from the triplestore; they are
only marked as deleted (see @ref:Deleting a Resource).
However, sometimes it is necessary to erase a resource from the triplestore.
To do so, use this route:

HTTP POST to http://host/v2/resources/erase

The request body is the same as for @ref:Deleting a Resource,
except that knora-api:deleteComment is not relevant and will be ignored.

To do this, a user must be a system administrator or an administrator of the
project containing the resource. The user’s permissions on the resource are
not otherwise checked.

A resource cannot be erased if any other resource has a link to it. Any such
links must first be changed or marked as deleted
(see @ref:Updating a Value and
@ref:Deleting a Value). Then,
when the resource is erased, the deleted link values that referred to
it will also be erased.

This operation cannot be undone (except by restoring the repository from a
backup), so use it with care.

Editing Values

@@toc

Creating a Value

To create a value in an existing resource, use this route:

HTTP POST to http://host/v2/values

The body of the request is a JSON-LD document in the
@ref:complex API schema, specifying the resource’s IRI and type,
the resource property, and the content of the value. The representation of the value
is the same as when it is returned in a GET request, except that its IRI and knora-api:attachedToUser
are not given. For example, to create an integer value:

{
 "@id" : "http://rdfh.ch/0001/a-thing",
 "@type" : "anything:Thing",
 "anything:hasInteger" : {
 "@type" : "knora-api:IntValue",
 "knora-api:intValueAsInt" : 4
 },
 "@context" : {
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "anything" : "http://0.0.0.0:3333/ontology/0001/anything/v2#"
 }
}

Each value can have a comment, given in knora-api:valueHasComment. For example:

{
 "@id" : "http://rdfh.ch/0001/a-thing",
 "@type" : "anything:Thing",
 "anything:hasInteger" : {
 "@type" : "knora-api:IntValue",
 "knora-api:intValueAsInt" : 4,
 "knora-api:valueHasComment" : "This is a comment."
 },
 "@context" : {
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "anything" : "http://0.0.0.0:3333/ontology/0001/anything/v2#"
 }
}

Permissions for the new value can be given by adding knora-api:hasPermissions. For example:

{
 "@id" : "http://rdfh.ch/0001/a-thing",
 "@type" : "anything:Thing",
 "anything:hasInteger" : {
 "@type" : "knora-api:IntValue",
 "knora-api:intValueAsInt" : 4,
 "knora-api:hasPermissions" : "CR knora-admin:Creator|V http://rdfh.ch/groups/0001/thing-searcher"
 },
 "@context" : {
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "anything" : "http://0.0.0.0:3333/ontology/0001/anything/v2#"
 }
}

The format of the object of knora-api:hasPermissions is described in
@ref:Permissions.

If permissions are not given, configurable default permissions are used
(see @ref:Default Object Access Permissions).

To create a value, the user must have modify permission on the containing resource.

The response is a JSON-LD document containing only @id and @type, returning the IRI
and type of the value that was created.

Creating a Link Between Resources

To create a link, you must create a knora-api:LinkValue, which represents metadata about the
link. The property that connects the resource to the LinkValue is a link value property, whose
name is constructed by adding Value to the name of the link property
(see @ref:Links Between Resources).
The triple representing the direct link between the resources is created automatically. For
example, if the link property that should connect the resources is anything:hasOtherThing,
we can create a link like this:

{
 "@id" : "http://rdfh.ch/0001/a-thing",
 "@type" : "anything:Thing",
 "anything:hasOtherThingValue" : {
 "@type" : "knora-api:LinkValue",
 "knora-api:linkValueHasTargetIri" : {
 "@id" : "http://rdfh.ch/0001/tPfZeNMvRVujCQqbIbvO0A"
 }
 },
 "@context" : {
 "xsd" : "http://www.w3.org/2001/XMLSchema#",
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "anything" : "http://0.0.0.0:3333/ontology/0001/anything/v2#"
 }
}

As with ordinary values, permissions on links can be specified by adding knora-api:hasPermissions.

Creating a Text Value Without Standoff Markup

Use the predicate knora-api:valueAsString of knora-api:TextValue:

{
 "@id" : "http://rdfh.ch/0001/a-thing",
 "@type" : "anything:Thing",
 "anything:hasText" : {
 "@type" : "knora-api:TextValue",
 "knora-api:valueAsString" : "This is a text without markup."
 },
 "@context" : {
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "anything" : "http://0.0.0.0:3333/ontology/0001/anything/v2#"
 }
}

Creating a Text Value with Standoff Markup

Currently, the only way to create a text value with standoff markup is to submit it in XML format
using an @ref:XML-to-standoff mapping. For example, suppose we use
the standard mapping, http://rdfh.ch/standoff/mappings/StandardMapping. We can then make an XML
document like this:

<?xml version="1.0" encoding="UTF-8"?>
<text>
 This text links to another resource.
</text>

This document can then be embedded in a JSON-LD request, using the predicate knora-api:textValueAsXml:

{
 "@id" : "http://rdfh.ch/0001/a-thing",
 "@type" : "anything:Thing",
 "anything:hasText" : {
 "@type" : "knora-api:TextValue",
 "knora-api:textValueAsXml" : "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<text>\n This text links to another resource.\n</text>",
 "knora-api:textValueHasMapping" : {
 "@id": "http://rdfh.ch/standoff/mappings/StandardMapping"
 }
 },
 "@context" : {
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "anything" : "http://0.0.0.0:3333/ontology/0001/anything/v2#"
 }
}

Note that quotation marks and line breaks in the XML must be escaped, and that the IRI of the mapping must be
provided.

Creating File Values

Knora supports the storage of certain types of data as files, using
Sipi [https://github.com/dhlab-basel/Sipi]
(see @ref:FileValue).
Knora API v2 currently supports using Sipi to store the following types of files:

	Images (JPEG, JPEG2000, TIFF, PNG), which are stored internally as JPEG2000

	PDF

Support for other types of files will be added in the future.

The following sections describe the steps for creating a file value.

Upload Files to Sipi

The first step is to upload one or more files to Sipi, using a
multipart/form-data request, where sipihost represents the host and
port on which Sipi is running:

HTTP POST to http://sipihost/upload?token=TOKEN

The token parameter must provide the JSON Web Token [https://jwt.io/]
that Knora returned when the client logged in. Each body part in the request
must contain a parameter filename, providing the file’s original filename,
which both Knora and Sipi will store; these filenames can be descriptive
and need not be unique.

Sipi stores the file in a temporary location. If the file is an image, it is
converted first to JPEG2000 format, and the converted file is stored.

Sipi then returns a JSON response that looks something like this:

{
 "uploadedFiles": [{
 "originalFilename": "manuscript-1234-page-1.tiff",
 "internalFilename": "3UIsXH9bP0j-BV0D4sN51Xz.jp2",
 "temporaryBaseIIIFUrl": "http://sipihost/tmp/3UIsXH9bP0j-BV0D4sN51Xz.jp2"
 }, {
 "originalFilename": "manuscript-1234-page-2.tiff",
 "internalFilename": "2RvJgguglpe-B45EOk0Gx8H.jp2",
 "temporaryBaseIIIFUrl": "http://sipihost/tmp/2RvJgguglpe-B45EOk0Gx8H.jp2"
 }]
}

In this example, we uploaded two files to Sipi, so uploadedFiles is an
array with two elements. For each file, we have:

	the originalFilename, which we submitted when uploading the file

	the unique internalFilename that Sipi has randomly generated for the file

	the temporaryBaseIIIFUrl, which we can use to construct a IIIF URL for
previewing the file

In the case of an image file, the client may now wish to get a thumbnail of each
uploaded image, to allow the user to confirm that the correct files have been uploaded.
This can be done by adding IIIF parameters to temporaryBaseIIIFUrl. For example, to get
a JPG thumbnail image that is 150 pixels wide, you would add
/full/150,/0/default.jpg.

Submit A File Value to Knora

A Knora Representation (i.e. a resource containing information about a
file) must always have exactly one file value attached to it. (see
@ref:Representations).
Therefore, a request to create a new file value must always be submitted as part
of a request to create a new resource (see
@ref:Creating a Resource).
You can also update a file value in an existing Representation; see
@ref:Updating a Value.

Instead of providing the file’s complete metadata to Knora, you just provide the
unique internal filename generated by Sipi. Here is an example of a request to
create a resource of class anything:ThingPicture, which is a subclass of
knora-api:StillImageRepresentation and therefore has the property
knora-api:hasStillImageFileValue:

{
 "@type" : "anything:ThingPicture",
 "knora-api:hasStillImageFileValue" : {
 "@type" : "knora-api:StillImageFileValue",
 "knora-api:fileValueHasFilename" : "3UIsXH9bP0j-BV0D4sN51Xz.jp2"
 },
 "knora-api:attachedToProject" : {
 "@id" : "http://rdfh.ch/projects/0001"
 },
 "rdfs:label" : "test thing",
 "@context" : {
 "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#",
 "anything" : "http://0.0.0.0:3333/ontology/0001/anything/v2#"
 }
}

Knora then gets the rest of the file’s metadata from Sipi. If the client’s
request to Knora is valid, Knora saves the file value in the triplestore and
instructs Sipi to move the file to permanent storage. Otherwise, the
temporary file that was stored by Sipi is deleted.

If you’re submitting a PDF document, use the resource class
knora-api:DocumentRepresentation, which has the property
knora-api:hasDocumentFileValue, pointing to a
knora-api:DocumentFileValue.

Updating a Value

To update a value, use this route:

HTTP PUT to http://host/v2/values

Updating a value means creating a new version of an existing value. The new version
will have a different IRI. The request is the same as for creating a value, except that
the @id of the current value version is given. For example, to update an integer value:

{
 "@id" : "http://rdfh.ch/0001/a-thing",
 "@type" : "anything:Thing",
 "anything:hasInteger" : {
 "@id" : "http://rdfh.ch/0001/a-thing/values/vp96riPIRnmQcbMhgpv_Rg",
 "@type" : "knora-api:IntValue",
 "knora-api:intValueAsInt" : 5
 },
 "@context" : {
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "anything" : "http://0.0.0.0:3333/ontology/0001/anything/v2#"
 }
}

The value can be given a comment by using knora-api:valueHasComment. To change only
the comment of a value, you can resubmit the existing value with the updated comment.

Permissions can be specified by adding knora-api:hasPermissions. Otherwise, the new
version has the same permissions as the previous one. To change the permissions
on a value, the user must have change rights permission on the value.

To update only the permissions on a value, submit it with the new permissions and with its
@id and @type but without any other content, like this:

{
 "@id" : "http://rdfh.ch/0001/a-thing",
 "@type" : "anything:Thing",
 "anything:hasInteger" : {
 "@id" : "http://rdfh.ch/0001/a-thing/values/vp96riPIRnmQcbMhgpv_Rg",
 "@type" : "knora-api:IntValue",
 "knora-api:hasPermissions" : "CR knora-admin:Creator|V knora-admin:KnownUser"
 },
 "@context" : {
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "anything" : "http://0.0.0.0:3333/ontology/0001/anything/v2#"
 }
}

To update a link, the user must have modify permission on the containing resource as
well as on the value.

The response is a JSON-LD document containing only @id and @type, returning the IRI
and type of the new value version.

If you submit an outdated value ID in a request to update a value, the response will be
an HTTP 404 (Not Found) error.

Deleting a Value

Knora does not normally delete values; instead, it marks them as deleted, which means
that they do not appear in normal query results.

To mark a value as deleted, use this route:

HTTP POST to http://host/v2/values/delete

The request must include the resource’s ID and type, the property that points from
the resource to the value, and the value’s ID and type. For example:

{
 "@id" : "http://rdfh.ch/0001/a-thing",
 "@type" : "anything:Thing",
 "anything:hasInteger" : {
 "@id" : "http://rdfh.ch/0001/a-thing/values/vp96riPIRnmQcbMhgpv_Rg",
 "@type" : "knora-api:IntValue",
 "knora-api:deleteComment" : "This value was created by mistake."
 },
 "@context" : {
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "anything" : "http://0.0.0.0:3333/ontology/0001/anything/v2#"
 }
}

The optional property knora-api:deleteComment specifies a comment to be attached to the
value, explaining why it has been marked as deleted.

The response is a JSON-LD document containing the predicate knora-api:result
with a confirmation message.

Getting Lists

@@toc

Getting a complete List

In order to request a complete list, make a HTTP GET request to the lists route appending the Iri of the list’s root node (URL-encoded):

HTTP GET to http://host/v2/lists/listRootNodeIri

Lists are only returned in the complex schema. The response to a list request is a List (see interface List in module ListResponse).

Getting a single Node

In order to request a single node of a list, make a HTTP GET request to the node route appending the node’s Iri (URL-encoded):

HTTP GET to http://host/v2/node/nodeIri

Nodes are only returned in the complex schema. The response to a node request is a ListNode (see interface List in module ListResponse).

Knora API v2

@@toc { depth=1 }

@@@ index

	Introduction

	Authentication

	Knora IRIs

	Reading and Searching Resources

	Reading the User’s Permissions on Resources and Values

	Getting Lists

	XML to Standoff Mapping

	Gravsearch: Virtual Graph Search

	Editing Resources

	Editing Values

	Querying, Creating, and Updating Ontologies

	TEI/XML

	Permalinks

@@@

Introduction: Using API v2

@@toc

Version 2 of the Knora API aims to make both the response and request
formats more generic and consistent. Version 1 was basically the result
of the reimplementation of the existing API of the SALSAH prototype.
Since the development of this prototype has a long history and the
specification of API V1 was an evolving process, V1 has various
inconsistencies and peculiarities. With V2, we would like to offer a
format that is consistent and hence easier to use for a client.

Please note that V2 is still in development. We do not yet recommend
using it on productive systems.

API v2 Path Segment

Every request to API v2 includes v2 as a path segment, e.g.
http://host/v2/resources/http%3A%2F%2Frdfh.ch%2Fc5058f3a.
Accordingly, requests using any other version of the API will require
another path segment.

Response Formats

All API v2 responses can be returned in
JSON-LD [https://json-ld.org/spec/latest/json-ld/],
Turtle [https://www.w3.org/TR/turtle/],
or RDF/XML [https://www.w3.org/TR/rdf-syntax-grammar/], using
@extrefHTTP content negotiation. The client
can request these formats using the following MIME types:

Format	MIME Type
———	———————–
JSON-LD	application/ld+json
Turtle	text/turtle
RDF/XML	application/rdf+xml

JSON-LD

Our preferred format for data exchange is
JSON-LD [https://json-ld.org/spec/latest/json-ld/]. JSON-LD allows the
Knora API server to provide responses that are relatively easy for
automated processes to interpret, since their structure and semantics is
explicitly defined. For example, each user-created Knora resource
property is identified by an IRI, which can be dereferenced to get more
information about it (e.g. its label in different languages). Moreover,
each value has a type represented by an IRI. These are either standard
RDF types (e.g. XSD datatypes) or more complex types whose IRIs can be
dereferenced to get more information about their structure.

At the same time, JSON-LD responses are relatively easy for software
developers to work with, and are more concise and easier to read than
the equivalent XML. Items in a response can have human-readable names,
which can nevertheless be expanded to full IRIs. Also, while a format such as
Turtle [https://www.w3.org/TR/turtle/] just provides a
set of RDF triples, an equivalent JSON-LD response can explicitly
provide data in a hierarchical structure, with objects nested inside
other objects.

Knora IRIs

Resources and entities are identified by IRIs. The format of these IRIs
is explained in @ref:Knora IRIs.

API Schema

Knora API v2 uses RDF data structures that are simpler than the ones
actually stored in the triplestore, and more suitable for the development
of client software. Thus we refer to the internal schema of data
as it is stored in the triplestore, and to external schemas which
are used to represent that data in API v2.

Knora API v2 offers a complex schema and a simple one. The main difference
is that the complex schema exposes the complexity of value objects, while
the simple version does not. A client that needs to edit values must use the
complex schema in order to obtain the IRI of each value. A client that reads
but does not update data can use the simplified schema. The simple schema is
mainly intended to facilitate interoperability with other RDF-based systems in the
context of Linked Open Data. It is therefore designed to use the
simplest possible datatypes and to require minimal knowledge of Knora.

In either case, the client deals only with data whose structure and
semantics are defined by external Knora API ontologies, which are distinct from
the internal ontologies that are used to store date in the triplestore. The Knora
API server automatically converts back and forth between these internal
and external representations. This approach encapsulates the internals
and adds a layer of abstraction to them.

IRIs representing ontologies and ontology entities are different in different
schemas; see @ref:Knora IRIs.

Some API operations inherently require the client to accept responses in
the complex schema. For example, if an ontology is requested using an IRI
indicating the simple schema, the ontology will be returned in the simple schema (see
@ref:Querying, Creating, and Updating Ontologies).

Other API operations can return data in either schema. In this case, the
complex schema is used by default in the response, unless the request specifically
asks for the simple schema. The client can specify the desired schema by using
an HTTP header or a URL parameter:

	the HTTP header X-Knora-Accept-Schema

	the URL parameter schema

Both the HTTP header and the URL parameter accept the values simple or
complex.

Knora IRIs

@@toc

The IRIs used in Knora repositories and in the Knora API v2 follow
certain conventions.

Project Short-Codes

A project short-code is a hexadecimal number of at least four digits,
assigned by the DaSCH [http://dasch.swiss/] to uniquely identify a
Knora project regardless of where it is hosted. The IRIs of ontologies that
are built into Knora do not contain shortcodes; these ontologies implicitly
belong to the Knora system project.

A user-created ontology IRI must always include its project shortcode.

Project ID 0000 is reserved for shared ontologies
(see @ref:Shared Ontologies).

The range of project IDs from 0001 to 00FF inclusive is reserved for
local testing. Thus, the first useful project will be 0100.

In the beginning, Unil will use the IDs 0100 to 07FF, and Unibas
0800 to 08FF.

IRIs for Ontologies and Ontology Entities

Internal Ontology IRIs

Knora makes a distinction between internal and external ontologies. Internal
ontologies are used in the triplestore, while external ontologies are used in
API v2. For each internal ontology, there is a corresponding external ontology. Some
internal ontologies are built into Knora, while others are
user-created. Knora automatically generates external
ontologies based on user-created internal ontologies.

Each internal ontology has an IRI, which is also the IRI of the named
graph that contains the ontology in the triplestore. An internal
ontology IRI has the form:

http://www.knora.org/ontology/PROJECT_SHORTCODE/ONTOLOGY_NAME

For example, the internal ontology IRI based on project code 0001 and ontology
name example would be:

http://www.knora.org/ontology/0001/example

An ontology name must be a valid XML
NCName [https://www.w3.org/TR/xml-names/#NT-NCName].
The following names are reserved for built-in internal Knora ontologies:

	knora-base

	standoff

	salsah-gui

Names starting with knora are reserved for future built-in Knora
ontologies. A user-created ontology name may not start with the
letter v followed by a digit, and may not contain these reserved
words:

	knora

	ontology

	simple

	shared

External Ontology IRIs

Unlike internal ontology IRIs, external ontology IRIs are meant to be
dereferenced as URLs. When an ontology IRI is dereferenced, the ontology
itself can be served either in a machine-readable format or as
human-readable documentation.

The IRI of an external Knora ontology has the form:

http://HOST[:PORT]/ontology/PROJECT_SHORTCODE/ONTOLOGY_NAME/API_VERSION

For built-in and shared ontologies, the host is always api.knora.org. Otherwise,
the hostname and port configured in application.conf under
app.http.knora-api.host and app.http.knora-api.http-port are used
(the port is omitted if it is 80).

This means that when a built-in or shared external ontology IRI is dereferenced,
the ontology can be served by a Knora API server running at
api.knora.org. When the external IRI of a non-shared, project-specific ontology is
dereferenced, the ontology can be served by Knora that
hosts the project. During development and testing, this could be
localhost.

The name of an external ontology is the same as the name of the
corresponding internal ontology, with one exception: the external form
of knora-base is called knora-api.

The API version identifier indicates not only the version of the API,
but also an API ‘schema’. The Knora API v2 is available in two schemas:

	A complex schema, which is suitable both for reading and for editing
data. The complex schema represents values primarily as complex
objects. Its version identifier is v2.

	A simple schema, which is suitable for reading data but not for
editing it. The simple schema facilitates interoperability between
Knora ontologies and non-Knora ontologies, since it represents
values primarily as literals. Its version identifier is simple/v2.

Other schemas could be added in the future for more specific use cases.

When requesting an ontology, the client requests a particular schema.
(This will also be true of most Knora API v2 requests: the client will
be able to specify which schema the response should be provided in.)

For example, suppose a Knora API server is running at
knora.example.org and hosts an ontology whose internal IRI is
http://www.knora.org/ontology/0001/example. That ontology can then be
requested using either of these IRIs:

	http://knora.example.org/ontology/0001/example/v2 (in the complex
schema)

	http://knora.example.org/ontology/0001/example/simple/v2 (in the
simple schema)

While the internal example ontology refers to definitions in
knora-base, the external example ontology that is served by the API
refers instead to a knora-api ontology, whose IRI depends on the
schema being used:

	http://api.knora.org/ontology/knora-api/v2 (in the complex
schema)

	http://api.knora.org/ontology/knora-api/simple/v2 (in the simple
schema)

Ontology Entity IRIs

Knora ontologies use ‘hash namespaces’ (see URI
Namespaces [https://www.w3.org/2001/sw/BestPractices/VM/http-examples/2006-01-18/#naming]).
This means that the IRI of an ontology entity (a class or property
definition) is constructed by adding a hash character (#) to the
ontology IRI, followed by the name of the entity. In Knora, an entity
name must be a valid XML
NCName [https://www.w3.org/TR/xml-names/#NT-NCName].
Thus, if there is a class called ExampleThing in an ontology whose
internal IRI is http://www.knora.org/ontology/0001/example, that class
has the following IRIs:

	http://www.knora.org/ontology/0001/example#ExampleThing (in the
internal ontology)

	http://HOST[:PORT]/ontology/0001/example/v2#ExampleThing (in the
API v2 complex schema)

	http://HOST[:PORT]/ontology/0001/example/simple/v2#ExampleThing
(in the API v2 simple schema)

Shared Ontology IRIs

As explained in @ref:Shared Ontologies,
a user-created ontology can be defined as shared, meaning that it can be used by
multiple projects, and that its creators will not change it in ways that could
affect other ontologies or data that are based on it.

There is currently one project for shared ontologies:

http://www.knora.org/ontology/knora-base#DefaultSharedOntologiesProject

Its project code is 0000. Additional projects for shared ontologies may be supported
in future.

The internal and external IRIs of shared ontologies always use the hostname
api.knora.org, and have an additional segment, shared, after ontology.
The project code can be omitted, in which case the default shared ontology
project, 0000, is assumed. The sample shared ontology, example-box, has these IRIs:

	http://www.knora.org/ontology/shared/example-box (internal)

	http://api.knora.org/ontology/shared/example-box/v2 (external, complex schema)

	http://api.knora.org/ontology/shared/example-box/simple/v2 (external, simple schema)

IRIs for Data

Knora generates IRIs for data that it creates in the triplestore. Each
generated data IRI contains one or more @extrefUUID
identifiers to make it unique. To keep data IRIs relatively short, each UUID is
@extrefbase64url-encoded, without padding;
thus each UUID is a 22-character string.

Data IRIs are not currently intended to be dereferenced as URLs.
Instead, each Knora resource has a separate @ref:permalink.

A Knora value does not have a stable IRI throughout its version history.
Each time a new version of a value is made, the new version gets a new IRI.
Therefore, it would not make sense to publish Knora value IRIs. When designing
ontologies for Knora projects, keep in mind that if you want something be directly
citable, it needs to be a resource, not a value.

The formats of generated data IRIs for different types of objects are as
follows:

	Resource: http://rdfh.ch/PROJECT_SHORTCODE/RESOURCE_UUID.

	Value:
http://rdfh.ch/PROJECT_SHORTCODE/RESOURCE_UUID/values/VALUE_UUID

	Standoff tag:
http://rdfh.ch/PROJECT_SHORTCODE/RESOURCE_UUID/values/VALUE_UUID/STANDOFF_UUID

	XML-to-standoff mapping:
http://rdfh.ch/PROJECT_SHORTCODE/mappings/MAPPING_NAME

	XML-to-standoff mapping element:
http://rdfh.ch/PROJECT_SHORTCODE/mappings/MAPPING_NAME/elements/MAPPING_ELEMENT_UUID

	Project: http://rdfh.ch/projects/PROJECT_SHORTCODE

	Group: http://rdfh.ch/groups/PROJECT_SHORTCODE/GROUP_UUID

	Permission:
http://rdfh.ch/permissions/PROJECT_SHORTCODE/PERMISSION_UUID

	Lists: http://rdfh.ch/lists/PROJECT_SHORTCODE/LIST_UUID

	User: http://rdfh.ch/users/USER_UUID

Querying, Creating, and Updating Ontologies

@@toc

Querying Ontology Information

Before reading this document, you should have a basic understanding of
Knora API v2 external ontology schemas (see @ref:API Schema).

Each request returns a single RDF graph, which can be represented in
JSON-LD [https://json-ld.org/spec/latest/json-ld/],
Turtle [https://www.w3.org/TR/turtle/],
or RDF/XML [https://www.w3.org/TR/rdf-syntax-grammar/], using
@extrefHTTP content negotiation (see
@ref:Response Formats).

The response format uses prefixes to shorten IRIs, making them more
human-readable. A client may wish to convert these to full IRIs for
processing. This can be done with responses in JSON-LD by using a library
that implements the JSON-LD API [https://www.w3.org/TR/json-ld-api/]
to compact the document with an empty JSON-LD @context.

Querying Ontology Metadata

Requests for ontology metadata can return information about more than one
ontology, unlike other requests for ontology information. To get metadata
about all ontologies:

HTTP GET to http://host/v2/ontologies/metadata

If you submit a project IRI in the X-Knora-Accept-Project header, only the
ontologies for that project will be returned.

The response is in the complex API v2 schema. Sample response:

{
 "@graph" : [{
 "@id" : "http://0.0.0.0:3333/ontology/00FF/images/v2",
 "@type" : "owl:Ontology",
 "knora-api:attachedToProject" : {
 "@id" : "http://rdfh.ch/projects/00FF"
 },
 "rdfs:label" : "The images demo ontology"
 }, {
 "@id" : "http://0.0.0.0:3333/ontology/0801/beol/v2",
 "@type" : "owl:Ontology",
 "knora-api:attachedToProject" : {
 "@id" : "http://rdfh.ch/projects/yTerZGyxjZVqFMNNKXCDPF"
 },
 "rdfs:label" : "The BEOL ontology"
 }, {
 "@id" : "http://0.0.0.0:3333/ontology/0804/dokubib/v2",
 "@type" : "owl:Ontology",
 "knora-api:attachedToProject" : {
 "@id" : "http://rdfh.ch/projects/0804"
 },
 "rdfs:label" : "The dokubib ontology"
 }, {
 "@id" : "http://api.knora.org/ontology/salsah-gui/v2",
 "@type" : "owl:Ontology",
 "knora-api:attachedToProject" : {
 "@id" : "http://www.knora.org/ontology/knora-base#SystemProject"
 },
 "rdfs:label" : "The salsah-gui ontology"
 }, {
 "@id" : "http://api.knora.org/ontology/standoff/v2",
 "@type" : "owl:Ontology",
 "knora-api:attachedToProject" : {
 "@id" : "http://www.knora.org/ontology/knora-base#SystemProject"
 },
 "rdfs:label" : "The standoff ontology"
 }],
 "@context" : {
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "owl" : "http://www.w3.org/2002/07/owl#"
 }
}

To get metadata about the ontologies that belong to one or more particular
projects:

HTTP GET to http://host/v2/ontologies/metadata/PROJECT_IRI[/PROJECT_IRI...]

The project IRIs must be URL-encoded.

Example response for the images test project
(project IRI http://rdfh.ch/projects/00FF):

{
 "@id" : "http://0.0.0.0:3333/ontology/00FF/images/v2",
 "@type" : "owl:Ontology",
 "knora-api:attachedToProject" : {
 "@id" : "http://rdfh.ch/projects/00FF"
 },
 "rdfs:label" : "The images demo ontology",
 "@context" : {
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "owl" : "http://www.w3.org/2002/07/owl#"
 }
}

Querying an Ontology

An ontology can be queried either by using an API route directly or by
simply dereferencing the ontology IRI. The API route is as follows:

HTTP GET to http://host/v2/ontologies/allentities/ONTOLOGY_IRI

The ontology IRI must be URL-encoded, and may be in either the complex
or the simple schema. The response will be in the same schema. For
example, if the server is running on 0.0.0.0:3333, you can request
the knora-api ontology in the complex schema as follows:

HTTP GET to http://0.0.0.0:3333/v2/ontologies/allentities/http%3A%2F%2Fapi.knora.org%2Fontology%2Fknora-api%2Fv2

By default, this returns the ontology in JSON-LD; to request Turtle
or RDF/XML, add an HTTP Accept header
(see @ref:Response Formats).

If the client dereferences a project-specific ontology IRI as a URL, the
Knora API server running on the hostname in the IRI will serve the
ontology. For example, if the server is running on 0.0.0.0:3333, the
IRI http://0.0.0.0:3333/ontology/00FF/images/simple/v2 can be
dereferenced to request the images sample ontology in the simple
schema.

If the client dereferences a built-in Knora ontology, such as
http://api.knora.org/ontology/knora-api/simple/v2, there must be a
Knora API server running at api.knora.org that can serve the ontology.
The DaSCH [http://dasch.swiss/] intends to run such as server. For
testing, you can configure your local /etc/hosts file to resolve
api.knora.org as localhost.

Differences Between Internal and External Ontologies

The external ontologies used by Knora API v2 are different to the internal
ontologies that are actually stored in the triplestore (see
@ref:API Schema). In general, the external
ontologies use simpler data structures, but they also provide additional
information to make it easier for clients to use them. This is illustrated
in the examples in the next sections.

The internal predicates knora-base:subjectClassConstraint and
knora-base:objectClassConstraint (see
@ref:Constraints on the Types of Property Subjects and Objects)
are represented as knora-api:subjectType and knora-api:objectType in
external ontologies.

JSON-LD Representation of an Ontology in the Simple Schema

The simple schema is suitable for client applications that need to read
but not update data in Knora. For example, here is the response for the
images sample ontology in the simple schema,
http://0.0.0.0:3333/ontology/00FF/images/simple/v2 (simplified for
clarity):

{
 "@id" : "http://0.0.0.0:3333/ontology/00FF/images/simple/v2",
 "@type" : "owl:Ontology",
 "rdfs:label" : "The images demo ontology",
 "@graph" : [{
 "@id" : "images:bild",
 "@type" : "owl:Class",
 "knora-api:resourceIcon" : "bild.png",
 "rdfs:comment" : "An image of the demo image collection",
 "rdfs:label" : "Image",
 "rdfs:subClassOf" : [{
 "@id" : "knora-api:StillImageRepresentation"
 }, {
 "@type" : "owl:Restriction",
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "knora-api:creationDate"
 }
 }, {
 "@type" : "owl:Restriction",
 "owl:minCardinality" : 0,
 "owl:onProperty" : {
 "@id" : "knora-api:hasIncomingLink"
 }
 }, {
 "@type" : "owl:Restriction",
 "owl:minCardinality" : 0,
 "owl:onProperty" : {
 "@id" : "knora-api:hasStandoffLinkTo"
 }
 }, {
 "@type" : "owl:Restriction",
 "owl:minCardinality" : 1,
 "owl:onProperty" : {
 "@id" : "knora-api:hasStillImageFile"
 }
 }, {
 "@type" : "owl:Restriction",
 "owl:maxCardinality" : 1,
 "owl:onProperty" : {
 "@id" : "knora-api:lastModificationDate"
 }
 }, {
 "@type" : "owl:Restriction",
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "rdfs:label"
 }
 }, {
 "@type" : "owl:Restriction",
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "images:description"
 }
 }, {
 "@type" : "owl:Restriction",
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "images:erfassungsdatum"
 }
 }, {
 "@type" : "owl:Restriction",
 "owl:maxCardinality" : 1,
 "owl:onProperty" : {
 "@id" : "images:urheber"
 }
 }]
 }, {
 "@id" : "images:description",
 "@type" : "owl:DatatypeProperty",
 "knora-api:objectType" : {
 "@id" : "xsd:string"
 },
 "knora-api:subjectType" : {
 "@id" : "images:bild"
 },
 "rdfs:label" : "Description",
 "rdfs:subPropertyOf" : [{
 "@id" : "knora-api:hasValue"
 }, {
 "@id" : "http://purl.org/dc/terms/description"
 }]
 }, {
 "@id" : "images:erfassungsdatum",
 "@type" : "owl:DatatypeProperty",
 "knora-api:objectType" : {
 "@id" : "knora-api:Date"
 },
 "knora-api:subjectType" : {
 "@id" : "images:bild"
 },
 "rdfs:label" : "Date of acquisition",
 "rdfs:subPropertyOf" : [{
 "@id" : "knora-api:hasValue"
 }, {
 "@id" : "http://purl.org/dc/terms/date"
 }]
 }, {
 "@id" : "images:firstname",
 "@type" : "owl:DatatypeProperty",
 "knora-api:objectType" : {
 "@id" : "xsd:string"
 },
 "knora-api:subjectType" : {
 "@id" : "images:person"
 },
 "rdfs:comment" : "First name of a person",
 "rdfs:label" : "First name",
 "rdfs:subPropertyOf" : {
 "@id" : "knora-api:hasValue"
 }
 }, {
 "@id" : "images:lastname",
 "@type" : "owl:DatatypeProperty",
 "knora-api:objectType" : {
 "@id" : "xsd:string"
 },
 "knora-api:subjectType" : {
 "@id" : "images:person"
 },
 "rdfs:comment" : "Last name of a person",
 "rdfs:label" : "Name",
 "rdfs:subPropertyOf" : {
 "@id" : "knora-api:hasValue"
 }
 }, {
 "@id" : "images:person",
 "@type" : "owl:Class",
 "knora-api:resourceIcon" : "person.png",
 "rdfs:comment" : "Person",
 "rdfs:label" : "Person",
 "rdfs:subClassOf" : [{
 "@id" : "knora-api:Resource"
 }, {
 "@type" : "owl:Restriction",
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "knora-api:creationDate"
 }
 }, {
 "@type" : "owl:Restriction",
 "owl:minCardinality" : 0,
 "owl:onProperty" : {
 "@id" : "knora-api:hasIncomingLink"
 }
 }, {
 "@type" : "owl:Restriction",
 "owl:minCardinality" : 0,
 "owl:onProperty" : {
 "@id" : "knora-api:hasStandoffLinkTo"
 }
 }, {
 "@type" : "owl:Restriction",
 "owl:maxCardinality" : 1,
 "owl:onProperty" : {
 "@id" : "knora-api:lastModificationDate"
 }
 }, {
 "@type" : "owl:Restriction",
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "rdfs:label"
 }
 }, {
 "@type" : "owl:Restriction",
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "images:lastname"
 }
 }, {
 "@type" : "owl:Restriction",
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "images:firstname"
 }
 }]
 }, {
 "@id" : "images:urheber",
 "@type" : "owl:ObjectProperty",
 "knora-api:objectType" : {
 "@id" : "images:person"
 },
 "knora-api:subjectType" : {
 "@id" : "images:bild"
 },
 "rdfs:comment" : "An entity primarily responsible for making the resource. Examples of a Creator include a person, an organization, or a service. Typically, the name of a Creator should be used to indicate the entity.",
 "rdfs:label" : "Creator",
 "rdfs:subPropertyOf" : {
 "@id" : "knora-api:hasLinkTo"
 }
 }],
 "@context" : {
 "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "images" : "http://0.0.0.0:3333/ontology/00FF/images/simple/v2#",
 "knora-api" : "http://api.knora.org/ontology/knora-api/simple/v2#",
 "owl" : "http://www.w3.org/2002/07/owl#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#"
 }
}

The response format is an RDF graph. The top level object describes the ontology
itself, providing its IRI (in the @id member) and its rdfs:label.
The @graph member (see
Named Graphs [https://json-ld.org/spec/latest/json-ld/#named-graphs] in the
JSON-LD specification) contains an array of entities that belong to the
ontology.

In a class definition, cardinalities for properties of the class are
represented as in OWL, using objects of type owl:Restriction. The
supported cardinalities are the ones indicated in
@ref:OWL Cardinalities.

The class definitions include cardinalities that are directly defined on
each class, as well as cardinalities inherited from base classes. For
example, we can see cardinalities inherited from knora-api:Resource,
such as knora-api:hasStandoffLinkTo and http://schema.org/name
(which represents rdfs:label).

In the simple schema, Knora value properties can be datatype properties.
The knora-base:objectType of a Knora value property such as
images:description is a literal datatype, in this case
xsd:string. Moreover, images:description is a subproperty of
the standard property dcterms:description, whose object can be a
literal value. A client that understands rdfs:subPropertyOf, and is
familiar with dcterms:description, can then work with
images:description on the basis of its knowledge about
dcterms:description.

By default, values for rdfs:label and rdfs:comment are returned only
in the user’s preferred language, or in the system default language. To
obtain these values in all available languages, add the URL parameter
?allLanguages=true. For example, with this parameter, the definition
of images:description becomes:

{
 "@id" : "images:description",
 "@type" : "owl:DatatypeProperty",
 "knora-api:objectType" : {
 "@id" : "xsd:string"
 },
 "knora-api:subjectType" : {
 "@id" : "images:bild"
 },
 "rdfs:label" : [{
 "@language" : "en",
 "@value" : "Description"
 }, {
 "@language" : "de",
 "@value" : "Beschreibung"
 }, {
 "@language" : "fr",
 "@value" : "Description"
 }, {
 "@language" : "it",
 "@value" : "Descrizione"
 }],
 "rdfs:subPropertyOf" : [{
 "@id" : "knora-api:hasValue"
 }, {
 "@id" : "http://purl.org/dc/terms/description"
 }]
}

To find out more about the knora-api entities used in the response,
the client can request the knora-api ontology in the simple schema:
http://api.knora.org/ontology/knora-api/simple/v2. For example,
images:erfassungsdatum has a knora-api:objectType of
knora-api:Date, which is a subtype of xsd:string with a
Knora-specific, human-readable format. In the knora-api simple
ontology, there is a definition of this type:

{
 "@id" : "http://api.knora.org/ontology/knora-api/simple/v2",
 "@type" : "owl:Ontology",
 "rdfs:label" : "The knora-api ontology in the simple schema",
 "@graph" : [{
 "@id" : "knora-api:Date",
 "@type" : "rdfs:Datatype",
 "rdfs:comment" : "Represents a date as a period with different possible precisions.",
 "rdfs:label" : "Date literal",
 "rdfs:subClassOf" : {
 "@type" : "rdfs:Datatype",
 "owl:onDatatype" : {
 "@id" : "xsd:string"
 },
 "owl:withRestrictions" : {
 "xsd:pattern" : "(GREGORIAN|JULIAN):\\d{1,4}(-\\d{1,2}(-\\d{1,2})?)?(BC| AD| BCE| CE)?(:\\d{1,4}(-\\d{1,2}(-\\d{1,2})?)?(BC| AD| BCE| CE)?)?"
 }
 }
 }],
 "@context" : {
 "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "knora-api" : "http://api.knora.org/ontology/knora-api/simple/v2#",
 "owl" : "http://www.w3.org/2002/07/owl#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#"
 }
}

JSON-LD Representation of an Ontology in the Complex Schema

The complex schema is suitable for client applications that need to
update data in Knora. For example, here is the response for the images
sample ontology in the complex schema, http://0.0.0.0:3333/ontology/00FF/images/v2
(simplified for clarity):

{
 "@id" : "http://0.0.0.0:3333/ontology/00FF/images/v2",
 "@type" : "owl:Ontology",
 "knora-api:attachedToProject" : {
 "@id" : "http://rdfh.ch/projects/00FF"
 },
 "rdfs:label" : "The images demo ontology",
 "@graph" : [{
 "@id" : "images:bild",
 "@type" : "owl:Class",
 "knora-api:canBeInstantiated" : true,
 "knora-api:isResourceClass" : true,
 "knora-api:resourceIcon" : "bild.png",
 "rdfs:comment" : "An image of the demo image collection",
 "rdfs:label" : "Image",
 "rdfs:subClassOf" : [{
 "@id" : "knora-api:StillImageRepresentation"
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "knora-api:attachedToProject"
 }
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "knora-api:attachedToUser"
 }
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "knora-api:creationDate"
 }
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:minCardinality" : 0,
 "owl:onProperty" : {
 "@id" : "knora-api:hasIncomingLink"
 }
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "knora-api:hasPermissions"
 }
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:minCardinality" : 0,
 "owl:onProperty" : {
 "@id" : "knora-api:hasStandoffLinkTo"
 }
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:minCardinality" : 0,
 "owl:onProperty" : {
 "@id" : "knora-api:hasStandoffLinkToValue"
 }
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:minCardinality" : 1,
 "owl:onProperty" : {
 "@id" : "knora-api:hasStillImageFileValue"
 }
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:maxCardinality" : 1,
 "owl:onProperty" : {
 "@id" : "knora-api:lastModificationDate"
 }
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "rdfs:label"
 }
 }, {
 "@type" : "owl:Restriction",
 "salsah-gui:guiOrder" : 3,
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "images:description"
 }
 }, {
 "@type" : "owl:Restriction",
 "salsah-gui:guiOrder" : 8,
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "images:erfassungsdatum"
 }
 }, {
 "@type" : "owl:Restriction",
 "salsah-gui:guiOrder" : 12,
 "owl:maxCardinality" : 1,
 "owl:onProperty" : {
 "@id" : "images:urheber"
 }
 }, {
 "@type" : "owl:Restriction",
 "salsah-gui:guiOrder" : 12,
 "owl:maxCardinality" : 1,
 "owl:onProperty" : {
 "@id" : "images:urheberValue"
 }
 }]
 }, {
 "@id" : "images:description",
 "@type" : "owl:ObjectProperty",
 "knora-api:isEditable" : true,
 "knora-api:isResourceProperty" : true,
 "knora-api:objectType" : {
 "@id" : "knora-api:TextValue"
 },
 "knora-api:subjectType" : {
 "@id" : "images:bild"
 },
 "salsah-gui:guiAttribute" : ["rows=10", "width=95%", "wrap=soft"],
 "salsah-gui:guiElement" : {
 "@id" : "salsah-gui:Textarea"
 },
 "rdfs:label" : "Description",
 "rdfs:subPropertyOf" : [{
 "@id" : "knora-api:hasValue"
 }, {
 "@id" : "http://purl.org/dc/terms/description"
 }]
 }, {
 "@id" : "images:erfassungsdatum",
 "@type" : "owl:ObjectProperty",
 "knora-api:isEditable" : true,
 "knora-api:isResourceProperty" : true,
 "knora-api:objectType" : {
 "@id" : "knora-api:DateValue"
 },
 "knora-api:subjectType" : {
 "@id" : "images:bild"
 },
 "salsah-gui:guiElement" : {
 "@id" : "salsah-gui:Date"
 },
 "rdfs:label" : "Date of acquisition",
 "rdfs:subPropertyOf" : [{
 "@id" : "knora-api:hasValue"
 }, {
 "@id" : "http://purl.org/dc/terms/date"
 }]
 }, {
 "@id" : "images:firstname",
 "@type" : "owl:ObjectProperty",
 "knora-api:isEditable" : true,
 "knora-api:isResourceProperty" : true,
 "knora-api:objectType" : {
 "@id" : "knora-api:TextValue"
 },
 "knora-api:subjectType" : {
 "@id" : "images:person"
 },
 "salsah-gui:guiAttribute" : ["maxlength=32", "size=32"],
 "salsah-gui:guiElement" : {
 "@id" : "salsah-gui:SimpleText"
 },
 "rdfs:comment" : "First name of a person",
 "rdfs:label" : "First name",
 "rdfs:subPropertyOf" : {
 "@id" : "knora-api:hasValue"
 }
 }, {
 "@id" : "images:lastname",
 "@type" : "owl:ObjectProperty",
 "knora-api:isEditable" : true,
 "knora-api:isResourceProperty" : true,
 "knora-api:objectType" : {
 "@id" : "knora-api:TextValue"
 },
 "knora-api:subjectType" : {
 "@id" : "images:person"
 },
 "salsah-gui:guiAttribute" : ["maxlength=32", "size=32"],
 "salsah-gui:guiElement" : {
 "@id" : "salsah-gui:SimpleText"
 },
 "rdfs:comment" : "Last name of a person",
 "rdfs:label" : "Name",
 "rdfs:subPropertyOf" : {
 "@id" : "knora-api:hasValue"
 }
 }, {
 "@id" : "images:person",
 "@type" : "owl:Class",
 "knora-api:canBeInstantiated" : true,
 "knora-api:isResourceClass" : true,
 "knora-api:resourceIcon" : "person.png",
 "rdfs:comment" : "Person",
 "rdfs:label" : "Person",
 "rdfs:subClassOf" : [{
 "@id" : "knora-api:Resource"
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "knora-api:attachedToProject"
 }
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "knora-api:attachedToUser"
 }
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "knora-api:creationDate"
 }
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:minCardinality" : 0,
 "owl:onProperty" : {
 "@id" : "knora-api:hasIncomingLink"
 }
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "knora-api:hasPermissions"
 }
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:minCardinality" : 0,
 "owl:onProperty" : {
 "@id" : "knora-api:hasStandoffLinkTo"
 }
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:minCardinality" : 0,
 "owl:onProperty" : {
 "@id" : "knora-api:hasStandoffLinkToValue"
 }
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:maxCardinality" : 1,
 "owl:onProperty" : {
 "@id" : "knora-api:lastModificationDate"
 }
 }, {
 "@type" : "owl:Restriction",
 "knora-api:isInherited" : true,
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "rdfs:label"
 }
 }, {
 "@type" : "owl:Restriction",
 "salsah-gui:guiOrder" : 0,
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "images:lastname"
 }
 }, {
 "@type" : "owl:Restriction",
 "salsah-gui:guiOrder" : 1,
 "owl:cardinality" : 1,
 "owl:onProperty" : {
 "@id" : "images:firstname"
 }
 }]
 }, {
 "@id" : "images:urheber",
 "@type" : "owl:ObjectProperty",
 "knora-api:isEditable" : true,
 "knora-api:isLinkProperty" : true,
 "knora-api:isResourceProperty" : true,
 "knora-api:objectType" : {
 "@id" : "images:person"
 },
 "knora-api:subjectType" : {
 "@id" : "images:bild"
 },
 "salsah-gui:guiAttribute" : "numprops=2",
 "salsah-gui:guiElement" : {
 "@id" : "salsah-gui:Searchbox"
 },
 "rdfs:comment" : "An entity primarily responsible for making the resource. Examples of a Creator include a person, an organization, or a service. Typically, the name of a Creator should be used to indicate the entity.",
 "rdfs:label" : "Creator",
 "rdfs:subPropertyOf" : {
 "@id" : "knora-api:hasLinkTo"
 }
 }, {
 "@id" : "images:urheberValue",
 "@type" : "owl:ObjectProperty",
 "knora-api:isEditable" : true,
 "knora-api:isLinkValueProperty" : true,
 "knora-api:isResourceProperty" : true,
 "knora-api:objectType" : {
 "@id" : "knora-api:LinkValue"
 },
 "knora-api:subjectType" : {
 "@id" : "images:bild"
 },
 "salsah-gui:guiAttribute" : "numprops=2",
 "salsah-gui:guiElement" : {
 "@id" : "salsah-gui:Searchbox"
 },
 "rdfs:comment" : "An entity primarily responsible for making the resource. Examples of a Creator include a person, an organization, or a service. Typically, the name of a Creator should be used to indicate the entity.",
 "rdfs:label" : "Creator",
 "rdfs:subPropertyOf" : {
 "@id" : "knora-api:hasLinkToValue"
 }
 }],
 "@context" : {
 "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "images" : "http://0.0.0.0:3333/ontology/00FF/images/v2#",
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "owl" : "http://www.w3.org/2002/07/owl#",
 "salsah-gui" : "http://api.knora.org/ontology/salsah-gui/v2#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#"
 }
}

In the complex schema, all Knora value properties are object properties,
whose objects are IRIs, each of which uniquely identifies a value that
contains metadata and can potentially be edited. The
knora-base:objectType of a Knora value property such as
images:description is a Knora value class, in this case
knora-api:TextValue. Similarly, images:erfassungsdatum has a
knora-api:objectType of knora-api:DateValue, which has a more
complex structure than the knora-api:Date datatype shown in the
previous section. A client can find out more about these value classes
by requesting the knora-api ontology in the complex schema,
http://api.knora.org/ontology/knora-api/v2.

Moreover, additional information is provided in the complex schema, to
help clients that wish to create or update resources and values. A Knora
resource class that can be instantiated is identified with the boolean
properties knora-api:isResourceClass and
knora-api:canBeInstantiated, to distinguish it from built-in abstract
classes. Knora resource properties whose values can be edited by clients
are identified with knora-api:isResourceProperty and
knora-api:isEditable, to distinguish them from properties whose values
are maintained automatically by Knora. Link value
properties are shown along with link properties, because a client that
updates links will need the IRIs of their link values. The predicate
salsah-gui:guiOrder tells a GUI client in what order to display the
properties of a class, and the predicates salsah-gui:guiElement and
salsah-gui:guiAttribute specify how to configure a GUI element for
editing the value of a property. For more information on the
salsah-gui ontology, see @ref:The SALSAH GUI Ontology.

Ontology Updates

The ontology update API must ensure that the ontologies it creates are
valid and consistent, and that existing data is not invalidated by a
change to an ontology. To make this easier to enforce, the ontology
update API allows only one entity to be created or modified at a time.
It is not possible to submit an entire ontology all at once. Each
update request is a JSON-LD document providing only the information that is
relevant to the update.

Moreover, the API enforces the following rules:

	An entity (i.e. a class or property) cannot be referred to until it
has been created.

	An entity cannot be modified or deleted if it is used in data,
except for changes to its rdfs:label or rdfs:comment.

	An entity cannot be modified if another entity refers to it, with
one exception: a knora-api:subjectType or knora-api:objectType
that refers to a class will not prevent the class’s cardinalities
from being modified.

Because of these rules, some operations have to be done in a specific
order:

	Properties have to be defined before they can be used in the
cardinalities of a class, but a property’s knora-api:subjectType
cannot refer to a class that does not yet exist. The recommended
approach is to first create a class with no cardinalities, then
create the properties that it needs, then add cardinalities for
those properties to the class.

	To delete a class along with its properties, the client must first
remove the cardinalities from the class, then delete the property
definitions, then delete the class definition.

When changing an existing ontology, the client must always supply the
ontology’s knora-api:lastModificationDate, which is returned in the
response to each update. If user A attempts to update an ontology, but
user B has already updated it since the last time user A received the
ontology’s knora-api:lastModificationDate, user A’s update will be
rejected with an HTTP 409 Conflict error. This means that it is possible
for two different users to work concurrently on the same ontology, but
this is discouraged since it is likely to lead to confusion.

An ontology can be created or updated only by a system administrator, or
by a project administrator in the ontology’s project.

Ontology updates always use the complex schema.

Creating a New Ontology

An ontology is always created within a particular project.

HTTP POST to http://host/v2/ontologies

{
 "knora-api:ontologyName" : "ONTOLOGY_NAME",
 "knora-api:attachedToProject" : {
 "@id" : "PROJECT_IRI",
 },
 "rdfs:label" : "ONTOLOGY_NAME",
 "@context" : {
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#"
 }
}

The ontology name must follow the rules given in
@ref:Knora IRIs.

If the ontology is to be shared by multiple projects, it must be
created in the default shared ontologies project,
http://www.knora.org/ontology/knora-base#DefaultSharedOntologiesProject,
and the request must have this additional boolean property:

"knora-api:isShared" : true

See @ref:Shared Ontologies for details about
shared ontologies.

A successful response will be a JSON-LD document providing only the
ontology’s metadata, which includes the ontology’s IRI. When the client
makes further requests to create entities (classes and properties) in
the ontology, it must construct entity IRIs by concatenating the
ontology IRI, a # character, and the entity name. An entity name must
be a valid XML NCName [https://www.w3.org/TR/xml-names/#NT-NCName].

Changing an Ontology’s Metadata

Currently, the only modifiable ontology metadata is the ontology’s
rdfs:label.

HTTP PUT to http://host/v2/ontologies/metadata

{
 "@id" : "ONTOLOGY_IRI",
 "rdfs:label" : "NEW_ONTOLOGY_LABEL",
 "knora-api:lastModificationDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "ONTOLOGY_LAST_MODIFICATION_DATE"
 },
 "@context" : {
 "xsd" : "http://www.w3.org/2001/XMLSchema#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#"
 }
}

A successful response will be a JSON-LD document providing only the
ontology’s metadata.

Deleting an Ontology

An ontology can be deleted only if it is not used in data.

HTTP DELETE to http://host/v2/ontologies/ONTOLOGY_IRI?lastModificationDate=ONTOLOGY_LAST_MODIFICATION_DATE

The ontology IRI and the ontology’s last modification date must be
URL-encoded.

A successful response will be a JSON-LD document containing a
confirmation message.

Creating a Class Without Cardinalities

HTTP POST to http://host/v2/ontologies/classes

{
 "@id" : "ONTOLOGY_IRI",
 "@type" : "owl:Ontology",
 "knora-api:lastModificationDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "ONTOLOGY_LAST_MODIFICATION_DATE"
 },
 "@graph" : [{
 "CLASS_IRI" : {
 "@id" : "CLASS_IRI",
 "@type" : "owl:Class",
 "rdfs:label" : {
 "@language" : "LANGUAGE_CODE",
 "@value" : "LABEL"
 },
 "rdfs:comment" : {
 "@language" : "LANGUAGE_CODE",
 "@value" : "COMMENT"
 },
 "rdfs:subClassOf" : {
 "@id" : "BASE_CLASS_IRI"
 }
 }
 }],
 "@context" : {
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "owl" : "http://www.w3.org/2002/07/owl#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#"
 }
}

Values for rdfs:label and rdfs:comment must be submitted in at least
one language, either as an object or as an array of objects.

At least one base class must be provided, which can be
knora-api:Resource or any of its subclasses.

A successful response will be a JSON-LD document providing the new class
definition (but not any of the other entities in the ontology).

Creating a Class With Cardinalities

This can work if the new class will have cardinalities for properties
that have no knora-api:subjectType, or if the new class will be a
subclass of their knora-api:subjectType.

HTTP POST to http://host/v2/ontologies/classes

{
 "@id" : "ONTOLOGY_IRI",
 "@type" : "owl:Ontology",
 "knora-api:lastModificationDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "ONTOLOGY_LAST_MODIFICATION_DATE"
 },
 "@graph" : [{
 "CLASS_IRI" : {
 "@id" : "CLASS_IRI",
 "@type" : "owl:Class",
 "rdfs:label" : {
 "@language" : "LANGUAGE_CODE",
 "@value" : "LABEL"
 },
 "rdfs:comment" : {
 "@language" : "LANGUAGE_CODE",
 "@value" : "COMMENT"
 },
 "rdfs:subClassOf" : [{
 "@id" : "BASE_CLASS_IRI"
 }, {
 "@type": "owl:Restriction",
 "OWL_CARDINALITY_PREDICATE": "OWL_CARDINALITY_VALUE",
 "owl:onProperty": {
 "@id" : "PROPERTY_IRI"
 }
 }]
 }
 }],
 "@context" : {
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "owl" : "http://www.w3.org/2002/07/owl#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#"
 }
}

OWL_CARDINALITY_PREDICATE and OWL_CARDINALITY_VALUE must correspond
to the supported combinations given in
@ref:OWL Cardinalities. (The placeholder
OWL_CARDINALITY_VALUE is shown here in quotes, but it should be an
unquoted integer.)

Values for rdfs:label and rdfs:comment must be submitted in at least
one language, either as an object or as an array of objects.

At least one base class must be provided.

When a cardinality on a link property is submitted, an identical cardinality
on the corresponding link value property is automatically added (see
@ref:Links Between Resources).

A successful response will be a JSON-LD document providing the new class
definition (but not any of the other entities in the ontology).

Changing the Labels of a Class

This operation is permitted even if the class is used in data.

HTTP PUT to http://host/v2/ontologies/classes

{
 "@id" : "ONTOLOGY_IRI",
 "@type" : "owl:Ontology",
 "knora-api:lastModificationDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "ONTOLOGY_LAST_MODIFICATION_DATE"
 },
 "@graph" : [{
 "CLASS_IRI" : {
 "@id" : "CLASS_IRI",
 "@type" : "owl:Class",
 "rdfs:label" : {
 "@language" : "LANGUAGE_CODE",
 "@value" : "LABEL"
 }
 }
 }],
 "@context" : {
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "owl" : "http://www.w3.org/2002/07/owl#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#"
 }
}

Values for rdfs:label must be submitted in at least one language,
either as an object or as an array of objects. The submitted labels will
replace the existing ones.

Changing the Comments of a Class

This operation is permitted even if the class is used in data.

HTTP PUT to http://host/v2/ontologies/classes

{
 "@id" : "ONTOLOGY_IRI",
 "@type" : "owl:Ontology",
 "knora-api:lastModificationDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "ONTOLOGY_LAST_MODIFICATION_DATE"
 },
 "@graph" : [{
 "CLASS_IRI" : {
 "@id" : "CLASS_IRI",
 "@type" : "owl:Class",
 "rdfs:comment" : {
 "@language" : "LANGUAGE_CODE",
 "@value" : "COMMENT"
 }
 }
 }],
 "@context" : {
 "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "owl" : "http://www.w3.org/2002/07/owl#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#"
 }
}

Values for rdfs:comment must be submitted in at least one language,
either as an object or as an array of objects. The submitted comments
will replace the existing ones.

Creating a Property

HTTP POST to http://host/v2/ontologies/properties

{
 "@id" : "ONTOLOGY_IRI",
 "@type" : "owl:Ontology",
 "knora-api:lastModificationDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "ONTOLOGY_LAST_MODIFICATION_DATE"
 },
 "@graph" : [{
 "PROPERTY_IRI" : {
 "@id" : "PROPERTY_IRI",
 "@type" : "owl:ObjectProperty",
 "knora-api:subjectType" : {
 "@id" : "SUBJECT_TYPE"
 },
 "knora-api:objectType" : {
 "@id" : "OBJECT_TYPE"
 },
 "rdfs:label" : {
 "@language" : "LANGUAGE_CODE",
 "@value" : "LABEL"
 },
 "rdfs:comment" : {
 "@language" : "LANGUAGE_CODE",
 "@value" : "COMMENT"
 },
 "rdfs:subPropertyOf" : {
 "@id" : "BASE_PROPERTY_IRI"
 },
 "salsah-gui:guiElement" : {
 "@id" : "GUI_ELEMENT_IRI"
 }
 "salsah-gui:guiAttribute" : ["GUI_ATTRIBUTE"]
 }
 }],
 "@context" : {
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "salsah-gui" : "http://api.knora.org/ontology/salsah-gui/v2#",
 "owl" : "http://www.w3.org/2002/07/owl#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#"
 }
}

Values for rdfs:label and rdfs:comment must be submitted in at least
one language, either as an object or as an array of objects.

At least one base property must be provided, which can be
knora-api:hasValue, knora-api:hasLinkTo, or any of their
subproperties, with the exception of file properties (subproperties of
knora-api:hasFileValue) and link value properties (subproperties of
knora-api:hasLinkToValue).

If the property is a link property, the corresponding link value property
(see @ref:Links Between Resources)
will automatically be created.

The property definition must specify its knora-api:objectType. If the
new property is a subproperty of knora-api:hasValue, its
knora-api:objectType must be one of the built-in subclasses of
knora-api:Value, which are defined in the knora-api ontology in the
complex schema. If the new property is a subproperty of
knora-base:hasLinkTo, its knora-api:objectType must be a subclass of
knora-api:Resource.

To improve consistency checking, it is recommended, but not required, to
provide knora-api:subjectType, which must be a subclass of
knora-api:Resource.

The predicates salsah-gui:guiElement and salsah-gui:guiAttribute are
optional. If provided, the object of guiElement must be one of the OWL
named individuals defined in
@ref:The SALSAH GUI Ontology. Some GUI elements
take required or optional attributes, which are provided as objects of
salsah-gui:guiAttribute; see @ref:The SALSAH GUI Ontology
for details.

A successful response will be a JSON-LD document providing the new
property definition (but not any of the other entities in the ontology).

Changing the Labels of a Property

This operation is permitted even if the property is used in data.

HTTP PUT to http://host/v2/ontologies/properties

{
 "@id" : "ONTOLOGY_IRI",
 "@type" : "owl:Ontology",
 "knora-api:lastModificationDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "ONTOLOGY_LAST_MODIFICATION_DATE"
 },
 "@graph" : [{
 "PROPERTY_IRI" : {
 "@id" : "PROPERTY_IRI",
 "@type" : "owl:ObjectProperty",
 "rdfs:label" : {
 "@language" : "LANGUAGE_CODE",
 "@value" : "LABEL"
 }
 }
 }],
 "@context" : {
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "owl" : "http://www.w3.org/2002/07/owl#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#"
 }
}

Values for rdfs:label must be submitted in at least one language,
either as an object or as an array of objects.

Changing the Comments of a Property

This operation is permitted even if the property is used in data.

HTTP PUT to http://host/v2/ontologies/properties

{
 "@id" : "ONTOLOGY_IRI",
 "@type" : "owl:Ontology",
 "knora-api:lastModificationDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "ONTOLOGY_LAST_MODIFICATION_DATE"
 },
 "@graph" : [{
 "PROPERTY_IRI" : {
 "@id" : "PROPERTY_IRI",
 "@type" : "owl:ObjectProperty",
 "rdfs:comment" : {
 "@language" : "LANGUAGE_CODE",
 "@value" : "COMMENT"
 }
 }
 }],
 "@context" : {
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "owl" : "http://www.w3.org/2002/07/owl#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#"
 }
}

Values for rdfs:comment must be submitted in at least one language,
either as an object or as an array of objects.

Adding Cardinalities to a Class

This operation is not permitted if the class is used in data, or if it
has a subclass.

HTTP POST to http://host/v2/ontologies/cardinalities

{
 "@id" : "ONTOLOGY_IRI",
 "@type" : "owl:Ontology",
 "knora-api:lastModificationDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "ONTOLOGY_LAST_MODIFICATION_DATE"
 },
 "@graph" : [{
 "CLASS_IRI" : {
 "@id" : "CLASS_IRI",
 "@type" : "owl:Class",
 "rdfs:subClassOf" : {
 "@type": "owl:Restriction",
 "OWL_CARDINALITY_PREDICATE": "OWL_CARDINALITY_VALUE",
 "owl:onProperty": {
 "@id" : "PROPERTY_IRI"
 }
 }
 }
 }],
 "@context" : {
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "owl" : "http://www.w3.org/2002/07/owl#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#"
 }
}

At least one cardinality must be submitted.

OWL_CARDINALITY_PREDICATE and OWL_CARDINALITY_VALUE must correspond
to the supported combinations given in
@ref:OWL Cardinalities. (The placeholder
OWL_CARDINALITY_VALUE is shown here in quotes, but it should be an
unquoted integer.)

When a cardinality on a link property is submitted, an identical cardinality
on the corresponding link value property is automatically added (see
@ref:Links Between Resources).

A successful response will be a JSON-LD document providing the new class
definition (but not any of the other entities in the ontology).

Replacing the Cardinalities of a Class

This removes all the cardinalities from the class and replaces them with
the submitted cardinalities. If no cardinalities are submitted (i.e. the
request contains no rdfs:subClassOf), the class is left with no
cardinalities.

This operation is not permitted if the class is used in data, or if it
has a subclass.

HTTP PUT to http://host/v2/ontologies/cardinalities

{
 "@id" : "ONTOLOGY_IRI",
 "@type" : "owl:Ontology",
 "knora-api:lastModificationDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "ONTOLOGY_LAST_MODIFICATION_DATE"
 },
 "@graph" : [{
 "CLASS_IRI" : {
 "@id" : "CLASS_IRI",
 "@type" : "owl:Class",
 "rdfs:subClassOf" : {
 "@type": "owl:Restriction",
 "OWL_CARDINALITY_PREDICATE": "OWL_CARDINALITY_VALUE",
 "owl:onProperty": {
 "@id" : "PROPERTY_IRI"
 }
 }
 }
 }],
 "@context" : {
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "owl" : "http://www.w3.org/2002/07/owl#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#"
 }
}

OWL_CARDINALITY_PREDICATE and OWL_CARDINALITY_VALUE must correspond
to the supported combinations given in
@ref:OWL Cardinalities. (The placeholder
OWL_CARDINALITY_VALUE is shown here in quotes, but it should be an
unquoted integer.)

When a cardinality on a link property is submitted, an identical cardinality
on the corresponding link value property is automatically added (see
@ref:Links Between Resources).

A successful response will be a JSON-LD document providing the new class
definition (but not any of the other entities in the ontology).

Deleting a Property

A property can be deleted only if no other ontology entity refers to it,
and if it is not used in data.

HTTP DELETE to http://host/v2/ontologies/properties/PROPERTY_IRI?lastModificationDate=ONTOLOGY_LAST_MODIFICATION_DATE

The property IRI and the ontology’s last modification date must be
URL-encoded.

If the property is a link property, the corresponding link value property
(see @ref:Links Between Resources)
will automatically be deleted.

A successful response will be a JSON-LD document providing only the
ontology’s metadata.

Deleting a Class

A class can be deleted only if no other ontology entity refers to it,
and if it is not used in data.

HTTP DELETE to http://host/v2/ontologies/classes/CLASS_IRI?lastModificationDate=ONTOLOGY_LAST_MODIFICATION_DATE

The class IRI and the ontology’s last modification date must be
URL-encoded.

A successful response will be a JSON-LD document providing only the
ontology’s metadata.

Permalinks

@@toc

Knora provides a permanent, citable URL for each resource and value.
These URLs use Archival Resource Key (ARK) Identifiers [http://n2t.net/e/ark_ids.html],
and are designed to remain valid even if the resource itself is moved
from one Knora repository to another.

Obtaining ARK URLs

In the @ref:complex schema, a resource or value
is always returned with two ARK URLs: one that will always refer
to the latest version of the resource or value (knora-api:arkUrl), and one that refers
specifically to the version being returned (knora-api:versionArkUrl).
For example:

{
 "@id" : "http://rdfh.ch/0803/2a6221216701",
 "@type" : "incunabula:book",
 "incunabula:book_comment" : {
 "@id" : "http://rdfh.ch/0803/2a6221216701/values/56c287fc9505",
 "@type" : "knora-api:TextValue",
 "knora-api:arkUrl" : {
 "@type" : "xsd:anyURI",
 "@value" : "http://ark.dasch.swiss/ark:/72163/1/0803/2a6221216701W/dhaRsvZATjmOxhCOOzHqewB"
 },
 "knora-api:versionArkUrl" : {
 "@type" : "xsd:anyURI",
 "@value" : "http://ark.dasch.swiss/ark:/72163/1/0803/2a6221216701W/dhaRsvZATjmOxhCOOzHqewB.20160302T150521Z"
 },
 "knora-api:attachedToUser" : {
 "@id" : "http://rdfh.ch/users/91e19f1e01"
 },
 "knora-api:hasPermissions" : "CR knora-admin:Creator|M knora-admin:ProjectMember|V knora-admin:UnknownUser",
 "knora-api:userHasPermission" : "V",
 "knora-api:valueAsString" : "Katalogaufnahme anhand ISTC und v.d.Haegen",
 "knora-api:valueCreationDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "2016-03-02T15:05:21Z"
 },
 "knora-api:valueHasUUID" : "dhaRsvZATjmOxhCOOzHqew"
 },
 "knora-api:arkUrl" : {
 "@type" : "xsd:anyURI",
 "@value" : "http://ark.dasch.swiss/ark:/72163/1/0803/2a6221216701W"
 },
 "knora-api:versionArkUrl" : {
 "@type" : "xsd:anyURI",
 "@value" : "http://ark.dasch.swiss/ark:/72163/1/0803/2a6221216701W.20160302T150521Z"
 },
 "knora-api:attachedToProject" : {
 "@id" : "http://rdfh.ch/projects/0803"
 },
 "knora-api:attachedToUser" : {
 "@id" : "http://rdfh.ch/users/91e19f1e01"
 },
 "knora-api:creationDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "2016-03-02T15:05:21Z"
 },
 "knora-api:hasPermissions" : "CR knora-admin:Creator|M knora-admin:ProjectMember|V knora-admin:UnknownUser",
 "knora-api:userHasPermission" : "V",
 "rdfs:label" : "Reise ins Heilige Land",
 "@context" : {
 "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "incunabula" : "http://0.0.0.0:3333/ontology/0803/incunabula/v2#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#"
 }
}

In the @ref:simple schema, resources are returned
with ARK URLs, but values are returned as literals, so ARK URLs are not provided
for values.

For more information on getting past versions of resources and values, see:

	@ref:Get a Full Representation of a Version of a Resource by IRI

	@ref:Get a Version of a Value in a Resource

	@ref:Get the Version History of a Resource

Resolving Knora ARK URLs

A Knora ARK URL is intended to be resolved by the Knora ARK resolver [https://github.com/dhlab-basel/ark-resolver].

Knora ARK URL Format

For details, see @ref:Archival Resource Key (ARK) Identifiers.

ARK URLs for Projects

The format of a Knora project ARK URL is as follows:

http://HOST/ark:/NAAN/VERSION/PROJECT

NAAN is a
Name Assigning Authority Number [https://tools.ietf.org/html/draft-kunze-ark-22#section-2.3],
VERSION is the version number of the Knora ARK URL format (currently always 1),
and PROJECT is the project’s @ref:short-code.

For example, given a project with ID 0001, and using the DaSCH’s ARK resolver
hostname and NAAN, the ARK URL for the project itself is:

http://ark.dasch.swiss/ark:/72163/1/0001

This could redirect to a page describing the project.

ARK URLs for Resources

The format of a Knora resource ARK URL is as follows:

http://HOST/ark:/NAAN/VERSION/PROJECT/RESOURCE_UUID[.TIMESTAMP]

NAAN is a
Name Assigning Authority Number [https://tools.ietf.org/html/draft-kunze-ark-22#section-2.3],
VERSION is the version number of the Knora ARK URL format (currently always 1),
PROJECT is the project’s @ref:short-code,
and RESOURCE_UUID is the resource’s @ref:UUID.

For example, given the Knora resource IRI http://rdfh.ch/0001/0C-0L1kORryKzJAJxxRyRQ,
and using the DaSCH’s ARK resolver hostname and NAAN, the corresponding
ARK URL without a timestamp is:

http://ark.dasch.swiss/ark:/72163/1/0001/0C=0L1kORryKzJAJxxRyRQY

The same ARK URL with an optional timestamp is:

http://ark.dasch.swiss/ark:/72163/1/0001/0C=0L1kORryKzJAJxxRyRQY.20180604T085622513Z

Without a timestamp, a Knora resource ARK URL refers to the latest version of the
resource at the time when the URL is resolved.

ARK URLs for Values

The format of a Knora value ARK URL is as follows:

http://HOST/ark:/NAAN/VERSION/PROJECT/RESOURCE_UUID/VALUE_UUID[.TIMESTAMP]

NAAN is a
Name Assigning Authority Number [https://tools.ietf.org/html/draft-kunze-ark-22#section-2.3],
VERSION is the version number of the Knora ARK URL format (currently always 1),
PROJECT is the project’s @ref:short-code,
RESOURCE_UUID is the resource’s @ref:UUID, and VALUE_UUID
is the value’s knora-api:valueHasUUID.

For example, given a value with knora-api:valueHasUUID "4OOf3qJUTnCDXlPNnygSzQ" in the resource
http://rdfh.ch/0001/0C-0L1kORryKzJAJxxRyRQ, and using the DaSCH’s ARK resolver
hostname and NAAN, the corresponding ARK URL without a timestamp is:

http://ark.dasch.swiss/ark:/72163/1/0001/0C=0L1kORryKzJAJxxRyRQY/4OOf3qJUTnCDXlPNnygSzQX

The same ARK URL with an optional timestamp is:

http://ark.dasch.swiss/ark:/72163/1/0001/0C=0L1kORryKzJAJxxRyRQY/4OOf3qJUTnCDXlPNnygSzQX.20180604T085622513Z

Without a timestamp, a Knora value ARK URL refers to the latest version of the
value at the time when the URL is resolved.

Gravsearch: Virtual Graph Search

@@toc

Basic Concept

Gravsearch is intended to offer the advantages of SPARQL endpoints
(particularly the ability to perform queries using complex search
criteria) while avoiding their drawbacks in terms of performance and
security (see The Enduring Myth of the SPARQL
Endpoint [https://daverog.wordpress.com/2013/06/04/the-enduring-myth-of-the-sparql-endpoint/]).
It also has the benefit of enabling clients to work with a simpler RDF
data model than the one Knora actually uses to store data in the
triplestore, and makes it possible to provide better error-checking.

Rather than being processed directly by the triplestore, a Gravsearch query
is interpreted by Knora, which enforces certain
restrictions on the query, and implements paging and permission
checking. The API server generates SPARQL based on the Gravsearch query
submitted, queries the triplestore, filters the results according to the
user’s permissions, and returns each page of query results as a Knora
API response. Thus, Gravsearch is a hybrid between a RESTful API and a
SPARQL endpoint.

A Gravsearch query conforms to a subset of the syntax of a SPARQL
CONSTRUCT [https://www.w3.org/TR/sparql11-query/#construct] query, with
some additional restrictions and functionality. In particular, the
variable representing the top-level (or ‘main’) resource that will
appear in each search result must be identified, statements must be
included to specify the types of the entities being queried, OFFSET is
used to control paging, and ORDER BY is used to sort the results.

It is certainly possible to write Gravsearch queries by hand, but we expect
that in general, they will be automatically generated by client
software, e.g. by a client user interface.

Submitting Gravsearch Queries

The recommended way to submit a Gravsearch query is via HTTP POST:

HTTP POST to http://host/v2/searchextended

This works like query via POST directly [https://www.w3.org/TR/sparql11-protocol/#query-via-post-direct]
in the SPARQL 1.1 Protocol [https://www.w3.org/TR/sparql11-protocol/]: the query
is sent unencoded as the HTTP request message body, in the UTF-8 charset.

It is also possible to submit a Gravsearch query using HTTP GET. The entire
query must be URL-encoded and included as the last element of the URL path:

HTTP GET to http://host/v2/searchextended/QUERY

The response to a Gravsearch query is an RDF graph, which can be requested in various
formats (see @ref:Responses Describing Resources).

To request the number of results rather than the results themselves, you can
do a count query:

HTTP POST to http://host/v2/searchextended/count

The response to a count query request is an object with one predicate,
http://schema.org/numberOfItems, with an integer value.

Gravsearch and API Schemas

A Gravsearch query can be written in either of the two
@ref:Knora API v2 schemas. The simple schema
is easier to work with, and is sufficient if you don’t need to query
anything below the level of a Knora value. If your query needs to refer to
standoff markup, you must use the complex schema. Each query must use a single
schema, with one exception (see @ref:Date Comparisons).

Gravsearch query results can be requested in the simple or complex schema;
see @ref:API Schema.

Using the Simple Schema

To write a query in the simple schema, use the knora-api ontology in
the simple schema, and use the simple schema for any other Knora ontologies
the query refers to, e.g.:

PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v2#>
PREFIX incunabula: <http://0.0.0.0:3333/ontology/0803/incunabula/simple/v2#>

In the simple schema, Knora values are represented as literals, which
can be used FILTER expressions
(see @ref:Filtering on Values in the Simple Schema).

Using the Complex Schema

To write a query in the complex schema, use the knora-api ontology in
the complex schema, and use the complex schema for any other Knora ontologies
the query refers to, e.g.:

PREFIX knora-api: <http://api.knora.org/ontology/knora-api/v2#>
PREFIX incunabula: <http://0.0.0.0:3333/ontology/0803/simple/v2#>

In the complex schema, Knora values are represented as objects belonging
to subclasses of knora-api:Value, e.g. knora-api:TextValue, and have
predicates of their own, which can be used in FILTER expressions
(see @ref:Filtering on Values in the Complex Schema).

Main and Dependent Resources

The main resource is the top-level resource in a search result. Other
resources that are in some way connected to the main resource are
referred to as dependent resources. If the client asks for a resource A
relating to a resource B, then all matches for A will be presented as
main resources and those for B as dependent resources. The main resource
must be represented by a variable, marked with knora-api:isMainResource,
as explained under @ref:CONSTRUCT Clause.

Virtual incoming Links

Depending on the ontology design, a resource A points to B or vice versa.
For example, a page A is part of a book B using the property incunabula:partOf.
If A is marked as the main resource, then B is nested as a dependent resource
in its link value incunabula:partOfValue. But in case B is marked as the main resource,
B does not have a link value pointing to A because in fact B is pointed to by A.
Instead, B has a virtual property knora-api:hasIncomingLink containing A’s link value:

"knora-api:hasIncomingLinkValue" : {
 "@id" : "http://rdfh.ch/A/values/xy",
 "@type" : "knora-api:LinkValue",
 "knora-api:linkValueHasSource" : {
 "@id" : "http://rdfh.ch/A",
 "@type" : "incunabula:page",
 "incunabula:partOfValue" : {
 "@id" : "http://rdfh.ch/A/values/xy",
 "@type" : "knora-api:LinkValue",
 "knora-api:linkValueHasTargetIri" : {
 "@id" : "http://rdfh.ch/B"
 }
 }
 }
 },

Note that the virtually inserted link value inverts the relation by using knora-api:linkValueHasSource.
The source of the link is A and its target B is only represented by an Iri (knora-api:linkValueHasTargetIri)
since B is the main resource.

Graph Patterns and Result Graphs

The WHERE clause of a Gravsearch query specifies a graph pattern. Each query
result will match this graph pattern, and will have the form of a graph
whose starting point is a main resource. The query’s graph pattern, and
hence each query result graph, can span zero more levels of relations
between resources. For example, a query could request regions
in images on pages of books written by a certain author, articles by
authors who were students of a particular professor, or authors of texts
that refer to events that took place within a certain date range.

Permission Checking

Each matching resource is returned with the values that the user has
permission to see. If the user does not have permission to see a matching
main resource, it is replaced by a proxy resource called
knora-api:ForbiddenResource. If a user does not have permission to see
a matching dependent resource, only its IRI is returned.

Inference

Gravsearch queries are understood to imply
RDFS reasoning [https://www.w3.org/TR/rdf11-mt/]. Depending on the
triplestore being used, this may be implemented using the triplestore’s
own reasoner or by query expansion in Knora.

This means that if a statement pattern specifies a property, the pattern will
also match subproperties of that property, and if a statement specifies that
a subject has a particular rdf:type, the statement will also match subjects
belonging to subclasses of that type.

Gravsearch Syntax

Every Gravsearch query is a valid SPARQL 1.1
CONSTRUCT [https://www.w3.org/TR/sparql11-query/#construct] query.
However, Gravsearch only supports a subset of the elements that can be used
in a SPARQL Construct query, and a Gravsearch
@ref:CONSTRUCT Clause has to indicate which variable
is to be used for the main resource in each search result.

Supported SPARQL Syntax

The current version of Gravsearch accepts CONSTRUCT queries whose WHERE
clauses use the following patterns, with the specified restrictions:

	OPTIONAL: cannot be nested in a UNION.

	UNION: cannot be nested in a UNION.

	FILTER: may contain a complex expression using the Boolean
operators AND and OR, as well as comparison operators. The left
argument of a comparison operator must be a query variable.
A Knora ontology entity IRI used in a FILTER must be a property IRI.

	FILTER NOT EXISTS

	MINUS

	OFFSET: the OFFSET is needed for paging. It does not actually
refer to the number of triples to be returned, but to the
requested page of results. The default value is 0, which refers
to the first page of results. The number of results per page is
defined in app/v2 in application.conf.

	ORDER BY: In SPARQL, the result of a CONSTRUCT query is an
unordered set of triples. However, a Gravsearch query returns an
ordered list of resources, which can be ordered by the values of
specified properties. If the query is written in the complex schema,
items below the level of Knora values may not be used in ORDER BY.

	BIND: The value assigned must be a Knora resource IRI.

Resources, Properties, and Values

Resources can be represented either by an IRI or by a variable, except for the
main resource, which must be represented by a variable.

It is possible to do a Gravsearch query in which the IRI of the main resource
is already known, e.g. to request specific information about that resource and
perhaps about linked resources. In this case, the IRI of the main resource must
be assigned to a variable using BIND.

Properties can be represented by an IRI or a query variable. If a
property is represented by a query variable, it can be restricted to
certain property IRIs using a FILTER.

A Knora value (i.e. a value attached to a knora-api:Resource)
must be represented as a query variable.

Filtering on Values

Filtering on Values in the Simple Schema

In the simple schema, a variable representing a Knora value can be used
directly in a FILTER expression. For example:

?book incunabula:title ?title .
FILTER(?title = "Zeitglöcklein des Lebens und Leidens Christi")

Here the type of ?title is xsd:string.

The following Knora value types can be compared with literals in FILTER
expressions in the simple schema:

	Text values (xsd:string)

	Uri values (xsd:anyURI)

	Integer values (xsd:integer)

	Decimal values (xsd:decimal)

	Boolean values (xsd:boolean)

	Date values (knora-api:Date)

	List values (knora-api:ListNode)

List values can only be searched for using the equal operator (=),
performing an exact match on a list node’s label. Labels can be given in different languages for a specific list node.
If one of the given list node labels matches, it is considered a match.
Note that in the simple schema, uniqueness is not guaranteed (as opposed to the complex schema).

A Knora value may not be represented as the literal object of a predicate;
for example, this is not allowed:

?book incunabula:title "Zeitglöcklein des Lebens und Leidens Christi" .

Filtering on Values in the Complex Schema

In the complex schema, variables representing Knora values are not literals.
You must add something to the query (generally a statement) to get a literal
from a Knora value. For example:

?book incunabula:title ?title .
?title knora-api:valueAsString "Zeitglöcklein des Lebens und Leidens Christi" .

Here the type of ?title is knora-api:TextValue. Note that no FILTER is needed
in this example. But if you want to use a different comparison operator,
you need a FILTER:

?page incunabula:seqnum ?seqnum .
?seqnum knora-api:intValueAsInt ?seqnumInt .
FILTER(?seqnumInt <= 10)

To match a date value in the complex schema, you must use the
knora-api:toSimpleDate function in a FILTER
(see @ref:Date Comparisons). The predicates of
knora-api:DateValue (knora-api:dateValueHasStartYear, etc.) are not
available in Gravsearch.

Date Comparisons

In the simple schema, you can compare a date value directly with a knora-api:Date
in a FILTER:

?book incunabula:pubdate ?pubdate .
FILTER(?pubdate < "JULIAN:1497"^^knora-api:Date)

In the complex schema, you must use the function knora-api:toSimpleDate,
passing it the variable representing the date value. The date literal used
in the comparison must still be a knora-api:Date in the simple schema.
This is the only case in which you can use both schemas in a single query:

PREFIX incunabula: <http://0.0.0.0:3333/ontology/0803/incunabula/v2#>
PREFIX knora-api: <http://api.knora.org/ontology/knora-api/v2#>
PREFIX knora-api-simple: <http://api.knora.org/ontology/knora-api/simple/v2#>

CONSTRUCT {
 ?book knora-api:isMainResource true .
 ?book incunabula:pubdate ?pubdate .
} WHERE {
 ?book a incunabula:book .
 ?book incunabula:pubdate ?pubdate .
 FILTER(knora-api:toSimpleDate(?pubdate) < "JULIAN:1497"^^knora-api-simple:Date)
} ORDER BY ?pubdate

You can also use knora-api:toSimpleDate with to search for date tags in standoff
text markup (see @ref:Matching Standoff Dates).

Searching for Matching Words

The function knora-api:match searches for matching words anywhere in a
text value, and is implemented using a full-text search index if available.
The first argument must be a variable of type xsd:string, and the second
argument is a string containing the words to be matched, separated by spaces.
The words to be matched are separated by spaces in a string literal.
The function supports the
@ref:Lucene Query Parser syntax.
Note that Lucene’s default operator is a logical OR when submitting several search terms.

For example, to search for titles that contain the words ‘Zeitglöcklein’ and
‘Lebens’ in the simple schema:

FILTER knora-api:match(?title, "Zeitglöcklein Lebens")

In the complex schema:

?title knora-api:valueAsString ?titleStr .
FILTER knora-api:match(?titleStr, "Zeitglöcklein Lebens")

If knora-api:match is used in a FILTER, it must be the only expression in
the FILTER.

Filtering Text by Language

To filter a text value by language in the simple schema, use the SPARQL lang function
on the text value, e.g.:

FILTER(lang(?text) = "fr")

In the complex schema, the lang function is not supported. Use the text
value’s knora-api:textValueHasLanguage predicate instead:

?text knora-api:textValueHasLanguage "fr" .

Regular Expressions

The SPARQL regex function [https://www.w3.org/TR/2013/REC-sparql11-query-20130321/#func-regex]
is supported. In the simple schema, you can use it directly on the text value,
e.g.

?book incunabula:title ?title .
FILTER regex(?title, "Zeit", "i")

In the complex schema, use it on the object of the text value’s
knora-api:valueAsString predicate:

?book incunabula:title ?title .
?title knora-api:valueAsString ?titleStr .
FILTER regex(?titleStr, "Zeit", "i")

Searching for Text Markup

To refer to standoff markup in text values, you must write your query in the complex
schema.

A knora-api:TextValue can have the property
knora-api:textValueHasStandoff, whose objects are the standoff markup
tags in the text. You can match the tags you’re interested in using
rdf:type or other properties of each tag.

Matching Text in a Standoff Tag

The function knora-api:matchInStandoff searches for standoff tags containing certain terms.
The implementation is optimised using the full-text search index if available. The
function takes three arguments:

	A variable representing the string literal value of a text value.

	A variable representing a standoff tag.

	A string literal containing space-separated search terms.

This function can only be used as the top-level expression in a FILTER.
For example:

PREFIX knora-api: <http://api.knora.org/ontology/knora-api/v2#>
PREFIX standoff: <http://api.knora.org/ontology/standoff/v2#>
PREFIX beol: <http://0.0.0.0:3333/ontology/0801/beol/v2#>

CONSTRUCT {
 ?letter knora-api:isMainResource true .
 ?letter beol:hasText ?text .
} WHERE {
 ?letter a beol:letter .
 ?letter beol:hasText ?text .
 ?text knora-api:valueAsString ?textStr .
 ?text knora-api:textValueHasStandoff ?standoffParagraphTag .
 ?standoffParagraphTag a standoff:StandoffParagraphTag .
 FILTER knora-api:matchInStandoff(?textStr, ?standoffParagraphTag, "Grund Richtigkeit")
}

Here we are looking for letters containing the words “Grund” and “Richtigkeit”
within a single paragraph.

Matching Standoff Links

If you are only interested in specifying that a resource has some text
value containing a standoff link to another resource, the most efficient
way is to use the property knora-api:hasStandoffLinkTo, whose subjects and objects
are resources. This property is automatically maintained by Knora. For example:

PREFIX knora-api: <http://api.knora.org/ontology/knora-api/v2#>
PREFIX beol: <http://0.0.0.0:3333/ontology/0801/beol/v2#>

CONSTRUCT {
 ?letter knora-api:isMainResource true .
 ?letter beol:hasText ?text .
} WHERE {
 ?letter a beol:letter .
 ?letter beol:hasText ?text .
 ?letter knora-api:hasStandoffLinkTo ?person .
 ?person a beol:person .
 ?person beol:hasIAFIdentifier ?iafIdentifier .
 ?iafIdentifier knora-api:valueAsString "(VIAF)271899510" .
}

Here we are looking for letters containing a link to the historian
Claude Jordan, who is identified by his Integrated Authority File
identifier, (VIAF)271899510.

However, if you need to specify the context in which the link tag occurs, you must
use the function knora-api:standoffLink. It takes three arguments:

	A variable or IRI representing the resource that is the source of the link.

	A variable representing the standoff link tag.

	A variable or IRI representing the resource that is the target of the link.

This function can only be used as the top-level expression in a FILTER.
For example:

PREFIX knora-api: <http://api.knora.org/ontology/knora-api/v2#>
PREFIX standoff: <http://api.knora.org/ontology/standoff/v2#>
PREFIX beol: <http://0.0.0.0:3333/ontology/0801/beol/v2#>

CONSTRUCT {
 ?letter knora-api:isMainResource true .
 ?letter beol:hasText ?text .
} WHERE {
 ?letter a beol:letter .
 ?letter beol:hasText ?text .
 ?text knora-api:textValueHasStandoff ?standoffLinkTag .
 ?standoffLinkTag a knora-api:StandoffLinkTag .
 FILTER knora-api:standoffLink(?letter, ?standoffLinkTag, ?person)
 ?person a beol:person .
 ?person beol:hasIAFIdentifier ?iafIdentifier .
 ?iafIdentifier knora-api:valueAsString "(VIAF)271899510" .
 ?standoffLinkTag knora-api:standoffTagHasStartParent ?standoffItalicTag .
 ?standoffItalicTag a standoff:StandoffItalicTag .
}

This has the same effect as the previous example, except that because we are matching
the link tag itself, we can specify that its immediate parent is a
StandoffItalicTag.

If you actually want to get the target of the link (in this example, ?person)
in the search results, you need to add a statement like
?letter knora-api:hasStandoffLinkTo ?person . to the WHERE clause and to the
CONSTRUCT clause:

PREFIX knora-api: <http://api.knora.org/ontology/knora-api/v2#>
PREFIX standoff: <http://api.knora.org/ontology/standoff/v2#>
PREFIX beol: <http://0.0.0.0:3333/ontology/0801/beol/v2#>

CONSTRUCT {
 ?letter knora-api:isMainResource true .
 ?letter beol:hasText ?text .
 ?letter knora-api:hasStandoffLinkTo ?person .
} WHERE {
 ?letter a beol:letter .
 ?letter beol:hasText ?text .
 ?text knora-api:textValueHasStandoff ?standoffLinkTag .
 ?standoffLinkTag a knora-api:StandoffLinkTag .
 FILTER knora-api:standoffLink(?letter, ?standoffLinkTag, ?person)
 ?person a beol:person .
 ?person beol:hasIAFIdentifier ?iafIdentifier .
 ?iafIdentifier knora-api:valueAsString "(VIAF)271899510" .
 ?standoffLinkTag knora-api:standoffTagHasStartParent ?standoffItalicTag .
 ?standoffItalicTag a standoff:StandoffItalicTag .
 ?letter knora-api:hasStandoffLinkTo ?person .
}

Matching Standoff Dates

You can use the knora-api:toSimpleDate function (see @refDate Comparisons)
to match dates in standoff date tags, i.e. instances of knora-api:StandoffDateTag or
of one of its subclasses. For example, here we are looking for a text containing
an anything:StandoffEventTag (which is a project-specific subclass of knora-api:StandoffDateTag)
representing an event that occurred sometime during the month of December 2016:

PREFIX knora-api: <http://api.knora.org/ontology/knora-api/v2#>
PREFIX anything: <http://0.0.0.0:3333/ontology/0001/anything/v2#>
PREFIX knora-api-simple: <http://api.knora.org/ontology/knora-api/simple/v2#>

CONSTRUCT {
 ?thing knora-api:isMainResource true .
 ?thing anything:hasText ?text .
} WHERE {
 ?thing a anything:Thing .
 ?thing anything:hasText ?text .
 ?text knora-api:textValueHasStandoff ?standoffEventTag .
 ?standoffEventTag a anything:StandoffEventTag .
 FILTER(knora-api:toSimpleDate(?standoffEventTag) = "GREGORIAN:2016-12 CE"^^knora-api-simple:Date)
}

Matching Ancestor Tags

Suppose we want to search for a standoff date in a paragraph, but we know
that the paragraph tag might not be the immediate parent of the date tag.
For example, the date tag might be in an italics tag, which is in a paragraph
tag. In that case, we can use the inferred property
knora-api:standoffTagHasStartAncestor. We can modify the previous example to
do this:

PREFIX knora-api: <http://api.knora.org/ontology/knora-api/v2#>
PREFIX standoff: <http://api.knora.org/ontology/standoff/v2#>
PREFIX anything: <http://0.0.0.0:3333/ontology/0001/anything/v2#>
PREFIX knora-api-simple: <http://api.knora.org/ontology/knora-api/simple/v2#>

CONSTRUCT {
 ?thing knora-api:isMainResource true .
 ?thing anything:hasText ?text .
} WHERE {
 ?thing a anything:Thing .
 ?thing anything:hasText ?text .
 ?text knora-api:textValueHasStandoff ?standoffDateTag .
 ?standoffDateTag a knora-api:StandoffDateTag .
 FILTER(knora-api:toSimpleDate(?standoffDateTag) = "GREGORIAN:2016-12-24 CE"^^knora-api-simple:Date)
 ?standoffDateTag knora-api:standoffTagHasStartAncestor ?standoffParagraphTag .
 ?standoffParagraphTag a standoff:StandoffParagraphTag .
}

CONSTRUCT Clause

In the CONSTRUCT clause of a Gravsearch query, the variable representing the
main resource must be indicated with knora-api:isMainResource true. Exactly
one variable representing a resource must be marked in this way.

Any other statements in the CONSTRUCT clause must also be present in the WHERE
clause. If a variable representing a resource or value is used in the WHERE
clause but not in the CONSTRUCT clause, the matching resources or values
will not be included in the results.

If the query is written in the complex schema, all variables in the CONSTRUCT
clause must refer to Knora resources, Knora values, or properties. Data below
the level of Knora values may not be mentioned in the CONSTRUCT clause.

Predicates from the rdf, rdfs, and owl ontologies may not be used
in the CONSTRUCT clause. The rdfs:label of each matching resource is always
returned, so there is no need to mention it in the query.

Gravsearch by Example

In this section, we provide some sample queries of different complexity
to illustrate the usage of Gravsearch.

Getting All the Components of a Compound Resource

In order to get all the components of a compound resource, the following
Gravsearch query can be sent to the API.

In this case, the compound resource is an incunabula:book identified
by the IRI http://rdfh.ch/c5058f3a and the components are of
type incunabula:page (test data for the Incunabula project). Since
inference is assumed, we can use knora-api:StillImageRepresentation
(incunabula:page is one of its subclasses). This makes the query more
generic and allows for reuse (for instance, a client would like to query
different types of compound resources defined in different ontologies).

ORDER BY is used to sort the components by their sequence number.

OFFSET is set to 0 to get the first page of results.

PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v2#>

CONSTRUCT {
 ?component knora-api:isMainResource true . # marking of the component searched for as the main resource, required
 ?component knora-api:seqnum ?seqnum . # return the sequence number in the response
 ?component knora-api:hasStillImageFileValue ?file . # return the StillImageFile in the response
} WHERE {
 ?component a knora-api:StillImageRepresentation . # restriction of the type of component
 ?component knora-api:isPartOf <http://rdfh.ch/c5058f3a> . # component relates to a compound resource via this property
 ?component knora-api:seqnum ?seqnum . # component must have a sequence number
 ?component knora-api:hasStillImageFileValue ?file . # component must have a StillImageFile
}
ORDER BY ASC(?seqnum) # order by sequence number, ascending
OFFSET 0 # get first page of results

The incunabula:book with the IRI http://rdfh.ch/c5058f3a has
402 pages. (This result can be obtained by doing a count query; see
@ref:Submitting Gravsearch Queries.)
However, with OFFSET 0, only the first page of results is returned.
The same query can be sent again with OFFSET 1 to get the next page of
results, and so forth. When a page of results is not full (see settings
in app/v2 in application.conf) or is empty, no more results are
available.

By design, it is not possible for the client to get more than one page
of results at a time; this is intended to prevent performance problems
that would be caused by huge responses. A client that wants to download
all the results of a query must request each page sequentially.

Let’s assume the client is not interested in all of the book’s pages,
but just in first ten of them. In that case, the sequence number can be
restricted using a FILTER that is added to the query’s WHERE clause:

FILTER (?seqnum <= 10)

The first page starts with sequence number 1, so with this FILTER only
the first ten pages are returned.

This query would be exactly the same in the complex schema, except for
the expansion of the knora-api prefix:

PREFIX knora-api: <http://api.knora.org/ontology/knora-api/v2#>

Traversing Multiple Links

Here we are looking for regions of pages that are part of books that have a
particular title. In the simple schema:

PREFIX incunabula: <http://0.0.0.0:3333/ontology/0803/incunabula/simple/v2#>
PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v2#>

CONSTRUCT {
 ?region knora-api:isMainResource true ;
 knora-api:isRegionOf ?page .

 ?page incunabula:partOf ?book .

 ?book incunabula:title ?title .
} WHERE {
 ?region a knora-api:Region ;
 knora-api:isRegionOf ?page .

 ?page a incunabula:page ;
 incunabula:partOf ?book .

 ?book incunabula:title ?title .

 FILTER(?title = "Zeitglöcklein des Lebens und Leidens Christi")
}

In the complex schema:

PREFIX incunabula: <http://0.0.0.0:3333/ontology/0803/incunabula/v2#>
PREFIX knora-api: <http://api.knora.org/ontology/knora-api/v2#>

CONSTRUCT {
 ?region knora-api:isMainResource true ;
 knora-api:isRegionOf ?page .

 ?page incunabula:partOf ?book .

 ?book incunabula:title ?title .
} WHERE {
 ?region a knora-api:Region ;
 knora-api:isRegionOf ?page .

 ?page a incunabula:page ;
 incunabula:partOf ?book .

 ?book incunabula:title ?title .

 ?title knora-api:valueAsString "Zeitglöcklein des Lebens und Leidens Christi" .
}

If we remove the line ?book incunabula:title ?title . from the CONSTRUCT
clause, so that the CONSTRUCT clause no longer mentions ?title, the response
will contain the same matching resources, but the titles of those resources
will not be included in the response.

Requesting a Graph Starting with a Known Resource

Here the IRI of the main resource is already known, and we want specific information
about it, as well as about related resources. In this case, the IRI of the main
resource must be assigned to a variable using BIND:

PREFIX beol: <http://0.0.0.0:3333/ontology/0801/beol/simple/v2#>
PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v2#>

CONSTRUCT {
 ?letter knora-api:isMainResource true ;
 beol:creationDate ?date ;
 ?linkingProp1 ?person1 .

 ?person1 beol:hasFamilyName ?familyName .
} WHERE {
 BIND(<http://rdfh.ch/0801/_B3lQa6tSymIq7_7SowBsA> AS ?letter)

 ?letter a beol:letter ;
 beol:creationDate ?date ;
 ?linkingProp1 ?person1 .

 FILTER(?linkingProp1 = beol:hasAuthor || ?linkingProp1 = beol:hasRecipient)

 ?person1 beol:hasFamilyName ?familyName .
} ORDER BY ?date

This query would be the same in the complex schema, except for the prefix
expansions:

PREFIX beol: <http://0.0.0.0:3333/ontology/0801/beol/v2#>
PREFIX knora-api: <http://api.knora.org/ontology/knora-api/v2#>

Searching for a List Value Referring to a Particular List Node

Since list nodes are represented by their Iri in the complex schema,
uniqueness is guranteed (as opposed to the simple schema).
Also all the subnodes of the given list node are considered a match.

PREFIX knora-api: <http://api.knora.org/ontology/knora-api/v2#>
PREFIX anything: <http://0.0.0.0:3333/ontology/0001/anything/v2#>

CONSTRUCT {
 ?thing knora-api:isMainResource true .
 ?thing anything:hasListItem ?listItem .
} WHERE {
 ?thing anything:hasListItem ?listItem .
 ?listItem knora-api:listValueAsListNode <http://rdfh.ch/lists/0001/treeList02> .
}

Type Inference

Gravsearch needs to be able to determine the types of the entities that
query variables and IRIs refer to in the WHERE clause. In most cases, it can
infer these from context and from the ontologies used. In particular, it needs to
know:

	The type of the subject and object of each statement.

	The type that is expected as the object of each predicate.

Type Annotations

When one or more types cannot be inferred, Gravsearch will return an error message
indicating the entities for which it could not determine types. The missing
information must then be given by adding type annotations to the query. This can always done by
adding statements with the predicate rdf:type. The subject must be a resource or value,
and the object must either be knora-api:Resource (if the subject is a resource)
or the subject’s specific type (if it is a value).

For example, consider this query that uses a non-Knora property:

PREFIX incunabula: <http://0.0.0.0:3333/ontology/0803/incunabula/simple/v2#>
PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v2#>
PREFIX dcterms: <http://purl.org/dc/terms/>

CONSTRUCT {
 ?book knora-api:isMainResource true ;
 dcterms:title ?title .

} WHERE {
 ?book dcterms:title ?title .
}

This produces the error message:

The types of one or more entities could not be determined:
 ?book, <http://purl.org/dc/terms/title>, ?title

To solve this problem, it is enough to specify the types of ?book and
?title; the type of the expected object of dcterms:title can then be inferred
from the type of ?title.

PREFIX incunabula: <http://0.0.0.0:3333/ontology/0803/incunabula/simple/v2#>
PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v2#>
PREFIX dcterms: <http://purl.org/dc/terms/>

CONSTRUCT {
 ?book knora-api:isMainResource true ;
 dcterms:title ?title .

} WHERE {

 ?book rdf:type incunabula:book ;
 dcterms:title ?title .

 ?title rdf:type xsd:string .

}

It would also be possible to annotate the property itself, using the predicate knora-api:objectType;
then the type of ?title would be inferred:

PREFIX incunabula: <http://0.0.0.0:3333/ontology/0803/incunabula/simple/v2#>
PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v2#>
PREFIX dcterms: <http://purl.org/dc/terms/>

CONSTRUCT {
 ?book knora-api:isMainResource true ;
 dcterms:title ?title .

} WHERE {

 ?book rdf:type incunabula:book ;
 dcterms:title ?title .

 dcterms:title knora-api:objectType xsd:string .

}

Note that it only makes sense to use dcterms:title in the simple schema, because
its object is supposed to be a literal.

Here is another example, using a non-Knora class:

PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v2#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT {
 ?person knora-api:isMainResource true .
} WHERE {
 ?person a foaf:Person .
 ?person foaf:familyName ?familyName .
 FILTER(?familyName = "Meier")
}

This produces the error message:

Types could not be determined for one or more entities: ?person

The solution is to specify that ?person is a knora-api:Resource:

PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v2#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT {
 ?person knora-api:isMainResource true .
} WHERE {
 ?person a foaf:Person .
 ?person a knora-api:Resource .
 ?person foaf:familyName ?familyName .
 FILTER(?familyName = "Meier")
}

Inconsistent Types

Gravsearch will also reject a query if an entity is used with inconsistent types.
For example:

PREFIX incunabula: <http://0.0.0.0:3333/ontology/0803/incunabula/simple/v2#>
PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v2#>

CONSTRUCT {
 ?book knora-api:isMainResource true ;
 incunabula:pubdate ?pubdate .
} WHERE {
 ?book a incunabula:book ;
 incunabula:pubdate ?pubdate .

 FILTER(?pubdate = "JULIAN:1497-03-01") .
}

This returns the error message:

One or more entities have inconsistent types:

<http://0.0.0.0:3333/ontology/0803/incunabula/simple/v2#pubdate>
 knora-api:objectType <http://api.knora.org/ontology/knora-api/simple/v2#Date> ;
 knora-api:objectType <http://www.w3.org/2001/XMLSchema#string> .

?pubdate rdf:type <http://api.knora.org/ontology/knora-api/simple/v2#Date> ;
 rdf:type <http://www.w3.org/2001/XMLSchema#string> .

This is because the incunabula ontology says that the object of incunabula:pubdate must be a knora-api:Date,
but the FILTER expression compares ?pubdate with an xsd:string. The solution is to specify the
type of the literal in the FILTER:

PREFIX incunabula: <http://0.0.0.0:3333/ontology/0803/incunabula/simple/v2#>
PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v2#>

CONSTRUCT {
 ?book knora-api:isMainResource true ;
 incunabula:pubdate ?pubdate .
} WHERE {
 ?book a incunabula:book ;
 incunabula:pubdate ?pubdate .

 FILTER(?pubdate = "JULIAN:1497-03-01"^^knora-api:Date) .
}

Reading and Searching Resources

@@toc

To retrieve an existing resource, the HTTP method GET has to be used.
Reading resources may require authentication, since some resources may
have restricted viewing permissions.

Responses Describing Resources

Resources can be returned in
JSON-LD [https://json-ld.org/spec/latest/json-ld/],
Turtle [https://www.w3.org/TR/turtle/],
or RDF/XML [https://www.w3.org/TR/rdf-syntax-grammar/], using
@extrefHTTP content negotiation (see
@ref:Response Formats).

Operations for reading and searching resources can return responses in either the
simple or the complex ontology schema. The complex schema is used by default.
To receive a response in the simple schema, use the HTTP request header or URL
parameter described in @ref:API Schema.

Each Knora API v2 response describing one or more resources returns a
single RDF graph. For example, a request for a single resource returns that
resource and all its values. In a full-text search, the resource is returned with the
values that matched the search criteria. A response to an extended search
may represent a whole graph of interconnected resources.

In JSON-LD, if only one resource is returned, it is the top-level object;
if more than one resource is returned, they are represented as an array
of objects of the @graph member of the top-level object (see
Named Graphs [https://json-ld.org/spec/latest/json-ld/#named-graphs] in the
JSON-LD specification).

In the complex schema, dependent resources, i.e. resources that are referred
to by other resources on the top level, are nested in link value objects.
If resources on the top level are referred to by other resources and
these links are part of the response, virtual incoming links are generated;
see @ref:Gravsearch: Virtual Graph Search).

See the interfaces Resource and ResourcesSequence in module
ResourcesResponse (exists for both API schemas: ApiV2Simple and
ApiV2WithValueObjects).

Text Markup Options

Text markup can be returned in one of two ways:

	As XML embedded in the response, using an @ref:XML to Standoff Mapping.

	As @ref:standoff/RDF,
which is Knora’s internal markup representation.

Embedded XML is the default.

Implementation of support for standoff/RDF in API v2 is in its early stages. The basic
procedure works like this:

First, request a resource in the @ref:complex schema, using any relevant
API v2 route, submitting the string standoff as the value of either:

	the HTTP header X-Knora-Accept-Markup

	the URL parameter markup

If a text value in the resource contains markup, the text value will look something like this:

{
 "@id" : "http://rdfh.ch/0001/LK-wKXDNQJaRHOf0F0aJ2g/values/1Er1OpVwQR2u6peTwyNpJw",
 "@type" : "knora-api:TextValue",
 "knora-api:attachedToUser" : {
 "@id" : "http://rdfh.ch/users/9XBCrDV3SRa7kS1WwynB4Q"
 },
 "knora-api:hasPermissions" : "CR knora-admin:Creator|V knora-admin:UnknownUser",
 "knora-api:textValueHasMarkup" : true,
 "knora-api:textValueHasMaxStandoffStartIndex" : 6737,
 "knora-api:userHasPermission" : "CR",
 "knora-api:valueAsString" : "\nHamlet\nACT I\nSCENE I. Elsinore. A platform before the castle...",
 "knora-api:valueCreationDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "2019-05-08T17:08:32.158401Z"
 }
}

The object knora-api:valueAsString contains the text without markup. The predicate
knora-api:textValueHasMarkup indicates that the text value has markup,
and the value of the predicate knora-api:textValueHasMaxStandoffStartIndex gives the start
index of the last standoff tag; this gives the client some idea of how much markup there is.

You can then request the text value’s standoff/RDF, which is returned in pages of a limited
size. To get each page:

HTTP GET to http://host/v2/standoff/RESOURCE_IRI/TEXT_VALUE_IRI/OFFSET

Both RESOURCE_IRI and TEXT_VALUE_IRI must be URL-encoded. The offset is an integer whose
initial value is 0. The response will look like this:

{
 "@graph" : [{
 "@type" : "http://api.knora.org/ontology/standoff/v2#StandoffRootTag",
 "knora-api:standoffTagHasEnd" : 184716,
 "knora-api:standoffTagHasStart" : 0,
 "knora-api:standoffTagHasStartIndex" : 0,
 "knora-api:standoffTagHasUUID" : "sbBzeAaNTzaUXl90UtlYzw"
 }, {
 "@type" : "http://api.knora.org/ontology/standoff/v2#StandoffHeader1Tag",
 "knora-api:standoffTagHasEnd" : 7,
 "knora-api:standoffTagHasStart" : 1,
 "knora-api:standoffTagHasStartIndex" : 1,
 "knora-api:standoffTagHasStartParentIndex" : 0,
 "knora-api:standoffTagHasUUID" : "HhXjcdSTS_G6eSQ0apdjUw"
 }, {
 "@type" : "http://api.knora.org/ontology/standoff/v2#StandoffHeader3Tag",
 "knora-api:standoffTagHasEnd" : 14,
 "knora-api:standoffTagHasStart" : 9,
 "knora-api:standoffTagHasStartIndex" : 2,
 "knora-api:standoffTagHasStartParentIndex" : 0,
 "knora-api:standoffTagHasUUID" : "Ymr2aDUqTx6nMwGZGiqduA"
 }, {
 "@type" : "http://api.knora.org/ontology/standoff/v2#StandoffHeader3Tag",
 "knora-api:standoffTagHasEnd" : 64,
 "knora-api:standoffTagHasStart" : 16,
 "knora-api:standoffTagHasStartIndex" : 3,
 "knora-api:standoffTagHasStartParentIndex" : 0,
 "knora-api:standoffTagHasUUID" : "_Zk0B1edRK6mgdtokmosXg"
 }, {
 "@type" : "http://api.knora.org/ontology/standoff/v2#StandoffBlockquoteTag",
 "knora-api:standoffTagHasEnd" : 112,
 "knora-api:standoffTagHasStart" : 66,
 "knora-api:standoffTagHasStartIndex" : 4,
 "knora-api:standoffTagHasStartParentIndex" : 0,
 "knora-api:standoffTagHasUUID" : "1DLdI0LJTCy07w6ZsOM_Sg"
 }, {
 "@type" : "http://api.knora.org/ontology/standoff/v2#StandoffItalicTag",
 "knora-api:standoffTagHasEnd" : 111,
 "knora-api:standoffTagHasStart" : 67,
 "knora-api:standoffTagHasStartIndex" : 5,
 "knora-api:standoffTagHasStartParentIndex" : 4,
 "knora-api:standoffTagHasUUID" : "XJ6GVO1VQSqrTyLHGnHqcA"
 }],
 "knora-api:nextStandoffStartIndex" : 100,
 "@context" : {
 "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#",
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#"
 }
}

See @ref:Text with Standoff Markup
for details of the predicates in each standoff tag.

If there are more pages of standoff to be requested, the response will contain knora-api:nextStandoffStartIndex,
whose object should be submitted as the next OFFSET to the same route. This continues until
you receive a response without knora-api:nextStandoffStartIndex.

Get the Representation of a Resource by IRI

Get a Full Representation of a Resource by IRI

A full representation of resource can be obtained by making a GET
request to the API providing its IRI. Because a Knora IRI has the format
of a URL, its IRI has to be URL-encoded.

To get the resource with the IRI http://rdfh.ch/c5058f3a (a
book from the sample Incunabula project, which is included in the Knora
API server’s test data), make a HTTP GET request to the resources
route (path segment resources in the API call) and append the
URL-encoded IRI:

HTTP GET to http://host/v2/resources/http%3A%2F%2Frdfh.ch%2Fc5058f3a

If necessary, several resources can be queried at the same time, their
IRIs separated by slashes. Please note that the amount of resources that
can be queried in one requested is limited. See the settings for
app/v2 in application.conf.

More formally, the URL looks like this:

HTTP GET to http://host/v2/resources/resourceIRI(/anotherResourceIri)*

Get a Full Representation of a Version of a Resource by IRI

To get a specific past version of a resource, use the route described in
@ref:Get a Full Representation of a Resource by IRI,
and add the URL parameter ?version=TIMESTAMP, where TIMESTAMP is an
xsd:dateTimeStamp [https://www.w3.org/TR/xmlschema11-2/#dateTimeStamp] in the
UTC timezone. The timestamp can either be URL-encoded, or submitted with all
punctuation (-, :, and .) removed (this is to accept timestamps
from Knora’s @ref:ARK URLs).

The resource will be returned with the values that it had at the specified
time. Since Knora only versions values, not resource metadata (e.g.
rdfs:label), the current metadata will be returned.

Each value will be returned with the permissions that are attached to
the current version of the value
(see @ref:Permissions).

The returned resource will include the predicate knora-api:versionDate,
containing the timestamp that was submitted, and its knora-api:versionArkUrl
(see @ref:Resource Permalinks) will contain the
same timestamp.

Get a Value in a Resource

To get a specific value of a resource, use this route:

HTTP GET to http://host//v2/values/resourceIRI/valueUUID

The resource IRI must be URL-encoded. The path element valueUUID is the
string object of the value’s knora-api:valueHasUUID.

The value will be returned within its containing resource, in the same format
as for @ref:Responses Describing Resources,
but without any of the resource’s other values.

Get a Version of a Value in a Resource

To get a particular version of a specific value of a resource, use the route
described in @ref:Get a Value in a Resource,
and add the URL parameter ?version=TIMESTAMP, where TIMESTAMP is an
xsd:dateTimeStamp [https://www.w3.org/TR/xmlschema11-2/#dateTimeStamp] in the
UTC timezone. The timestamp can either be URL-encoded, or submitted with all
punctuation (-, :, and .) removed (this is to accept timestamps
from Knora’s @ref:ARK URLs).

The value will be returned within its containing resource, in the same format
as for @ref:Responses Describing Resources,
but without any of the resource’s other values.

Since Knora only versions values, not resource metadata (e.g.
rdfs:label), the current resource metadata will be returned.

The value will be returned with the permissions that are attached to
its current version
(see @ref:Permissions).

Get the Version History of a Resource

To get a list of the changes that have been made to a resource since its creation,
use this route:

HTTP GET to http://host/v2/resources/history/resourceIRI[?startDate=START_DATE&endDate=END_DATE]

The resource IRI must be URL-encoded. The start and end dates are optional, and
are URL-encoded timestamps in
xsd:dateTimeStamp [https://www.w3.org/TR/xmlschema11-2/#dateTimeStamp] format.
The start date is inclusive, and the end date is exclusive.
If the start date is not provided, the resource’s history since its creation is returned.
If the end date is not provided, the resource’s history up to the present is returned.

The response is a list of changes made to the resource, in reverse chronological order.
Each entry has the properties knora-api:author (the IRI of the user who made the change) and
knora-api:versionDate (the date when the change was made). For example:

{
 "@graph" : [{
 "knora-api:author" : {
 "@id" : "http://rdfh.ch/users/BhkfBc3hTeS_IDo-JgXRbQ"
 },
 "knora-api:versionDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "2019-02-11T09:05:10Z"
 }
 }, {
 "knora-api:author" : {
 "@id" : "http://rdfh.ch/users/9XBCrDV3SRa7kS1WwynB4Q"
 },
 "knora-api:versionDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "2019-02-10T10:30:10Z"
 }
 }, {
 "knora-api:author" : {
 "@id" : "http://rdfh.ch/users/BhkfBc3hTeS_IDo-JgXRbQ"
 },
 "knora-api:versionDate" : {
 "@type" : "xsd:dateTimeStamp",
 "@value" : "2019-02-10T10:05:10Z"
 }
 }],
 "@context" : {
 "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#",
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#"
 }
}

The entries include all the dates when the resource’s values were created or modified (within
the requested date range), as well as the date when the resource was created (if the requested
date range allows it). Each date is included only once. Since Knora only versions values, not
resource metadata (e.g. rdfs:label), changes to a resource’s metadata are not included in its
version history.

To request the resource as it was at each of these dates, see
@ref:Get a Full Representation of a Version of a Resource by IRI. For consistency in citation, we recommend using these dates when
requesting resource versions.

Get the preview of a resource by IRI

In some cases, the client may only want to request the preview of a
resource, which just provides its metadata (e.g. its IRI, rdfs:label,
and type), without its values.

This works exactly like making a conventional resource request, using
the path segment resourcespreview:

HTTP GET to http://host/v2/resourcespreview/resourceIRI(/anotherResourceIri)*

Get a Graph of Resources

Knora can return a graph of connections between resources, e.g. for generating
a network diagram.

HTTP GET to http://host/v2/graph/resourceIRI[depth=Integer]
[direction=outbound|inbound|both][excludeProperty=propertyIri]

The first parameter must be preceded by a question mark ?, any
following parameter by an ampersand &.

	depth must be at least 1. The maximum depth is an Knora configuration setting.
The default is 4.

	direction specifies the direction of the links to be queried, i.e. links to
and/or from the given resource. The default is outbound.

	excludeProperty is an optional link property to be excluded from the
results.

To accommodate large graphs, the graph response format is very concise, and is therefore
simpler than the usual resources response format. Each resource represented only by its IRI,
class, and label. Direct links are shown instead of link values. For example:

{
 "@graph" : [{
 "@id" : "http://rdfh.ch/0001/0C-0L1kORryKzJAJxxRyRQ",
 "@type" : "anything:Thing",
 "rdfs:label" : "Sierra"
 }, {
 "@id" : "http://rdfh.ch/0001/A67ka6UQRHWf313tbhQBjw",
 "@type" : "anything:Thing",
 "rdfs:label" : "Victor"
 }, {
 "@id" : "http://rdfh.ch/0001/Lz7WEqJETJqqsUZQYexBQg",
 "@type" : "anything:Thing",
 "rdfs:label" : "Foxtrot"
 }, {
 "@id" : "http://rdfh.ch/0001/WLSHxQUgTOmG1T0lBU2r5w",
 "@type" : "anything:Thing",
 "anything:hasOtherThing" : {
 "@id" : "http://rdfh.ch/0001/A67ka6UQRHWf313tbhQBjw"
 },
 "rdfs:label" : "Tango"
 }, {
 "@id" : "http://rdfh.ch/0001/start",
 "@type" : "anything:Thing",
 "anything:hasOtherThing" : [{
 "@id" : "http://rdfh.ch/0001/0C-0L1kORryKzJAJxxRyRQ"
 }, {
 "@id" : "http://rdfh.ch/0001/WLSHxQUgTOmG1T0lBU2r5w"
 }, {
 "@id" : "http://rdfh.ch/0001/tPfZeNMvRVujCQqbIbvO0A"
 }],
 "rdfs:label" : "Romeo"
 }, {
 "@id" : "http://rdfh.ch/0001/tPfZeNMvRVujCQqbIbvO0A",
 "@type" : "anything:Thing",
 "anything:hasOtherThing" : {
 "@id" : "http://rdfh.ch/0001/Lz7WEqJETJqqsUZQYexBQg"
 },
 "rdfs:label" : "Echo"
 }],
 "@context" : {
 "rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "knora-api" : "http://api.knora.org/ontology/knora-api/v2#",
 "rdfs" : "http://www.w3.org/2000/01/rdf-schema#",
 "xsd" : "http://www.w3.org/2001/XMLSchema#",
 "anything" : "http://0.0.0.0:3333/ontology/0001/anything/v2#"
 }
}

Search for Resources

Search for a Resource by its rdfs:label

Knora offers the possibility to search for resources by their
rdfs:label. The use case for this search is to find a specific
resource as you type. E.g., the user wants to get a list of resources
whose rdfs:label contain some search terms separated by a whitespace
character:

	Zeit

	Zeitg

	…

	Zeitglöcklein d

	…

	Zeitglöcklein des Lebens

With each character added to the last term, the selection gets more
specific. The first term should at least contain four characters. To
make this kind of “search as you type” possible, a wildcard character is
automatically added to the last search term.
Search by label automatically adds Lucene operators,
search strings are expected not to contain any characters with a special meaning in
@ref:Lucene Query Parser syntax.

HTTP GET to http://host/v2/searchbylabel/searchValue[limitToResourceClass=resourceClassIRI]
[limitToProject=projectIRI][offset=Integer]

The first parameter must be preceded by a question mark ?, any
following parameter by an ampersand &.

The default value for the parameter offset is 0, which returns the
first page of search results. Subsequent pages of results can be fetched
by increasing offset by one. The amount of results per page is defined
in app/v2 in application.conf.

For performance reasons, standoff markup is not queried for this route.

To request the number of results rather than the results themselves, you can
do a count query:

HTTP GET to http://host/v2/searchbylabel/count/searchValue[limitToResourceClass=resourceClassIRI][limitToProject=projectIRI][offset=Integer]

The response to a count query request is an object with one predicate,
http://schema.org/numberOfItems, with an integer value.

Full-text Search

Knora offers a full-text search that searches through all textual
representations of values and rdfs:label of resources.
Full-text search supports the
@ref:Lucene Query Parser syntax.
Note that Lucene’s default operator is a logical OR when submitting several search terms.

Please note that the search
terms have to be URL-encoded.

HTTP GET to http://host/v2/search/searchValue[limitToResourceClass=resourceClassIRI]
[limitToStandoffClass=standoffClassIri][limitToProject=projectIRI][offset=Integer]

The first parameter has to be preceded by a question
mark ?, any following parameter by an ampersand &.

A search value must have a minimal length of three characters (default value) as defined in app/v2 in application.conf.

A search term may contain wildcards. A ? represents a single character. It has to be URL-encoded as %3F since it has a special meaning in the URL syntax. For example, the term Uniform can be search for like this:

HTTP GET to http://host/v2/search/Unif%3Frm

A * represents zero, one or multiple characters. For example, the term Uniform can be searched for like this:

HTTP GET to http://host/v2/search/Uni*m

The default value for the parameter offset is 0 which returns the
first page of search results. Subsequent pages of results can be fetched
by increasing offset by one. The amount of results per page is defined
in app/v2 in application.conf.

If the parameter limitToStandoffClass is provided, Knora will look for search terms
that are marked up with the indicated standoff class.

To request the number of results rather than the results themselves, you can
do a count query:

HTTP GET to http://host/v2/search/count/searchValue[limitToResourceClass=resourceClassIRI][limitToStandoffClass=standoffClassIri][limitToProject=projectIRI][offset=Integer]

The first parameter has to be preceded by a question
mark ?, any following parameter by an ampersand &.

The response to a count query request is an object with one predicate,
http://schema.org/numberOfItems, with an integer value.

Gravsearch

For more complex queries than a full-text search, Knora offers a query language
called @ref:Gravsearch: Virtual Graph Search).

Support of TEI/XML

To convert standoff markup to TEI/XML, see @ref:TEI/XML.

Reading Resources by Class from a Project

To facilitate the development of tabular user interfaces for data entry, it is
possible to get a paged list of all the resources belonging to a particular
class in a given project, sorted by the value of a property:

HTTP GET to http://host/v2/resources?resourceClass=RESOURCE_CLASS_IRI&page=PAGE[&orderByProperty=PROPERTY_IRI]

This is useful only if the project does not contain a large amount of data;
otherwise, you should use @ref:Gravsearch to search
using more specific criteria.

The HTTP header X-Knora-Accept-Project must be submitted; its value is
a Knora project IRI. In the request URL, the values of resourceClass and orderByProperty
are URL-encoded IRIs in the @ref:complex schema.
The orderByProperty parameter is optional; if it is not supplied, resources will
be sorted alphabetically by resource IRI (an arbitrary but consistent order).
The value of page is a 0-based integer page number. Paging works as it does
in @ref:Gravsearch).

Reading the User’s Permissions on Resources and Values

In the @ref:complex API schema, each
resource and value is returned with the predicate knora-api:userHasPermission.
The object of this predicate is a string containing a permission code, which
indicates the requesting user’s maximum permission on the resource or value.
These are the possible permission codes, in ascending order:

	RV: restricted view permission (least privileged)

	V: view permission

	M modify permission

	D: delete permission

	CR: change rights permission (most privileged)

Each permission implies all lesser permissions. For more details, see
@ref:Permissions.

TEI/XML: Converting Standoff to TEI/XML

@@toc

General

Knora offers a way to convert standoff markup to TEI/XML. The conversion is based on the assumption that a whole resource is to be turned into a TEI document.
There is a basic distinction between the body and the header of a TEI document. The resource’s property that contains the text with standoff markup is mapped to the TEI document’s body.
Other of the resource’s property may be mapped to the TEI header.

Standard Standoff to TEI Conversion

Knora offers a built-in conversion form standard standoff entities (defined in the standoff ontology) tags to TEI.

In order to obtain a resource as a TEI document, the following request has to be performed.
Please note that the URL parameters have to be URL-encoded.

HTTP GET to http://host/v2/tei/resourceIri?textProperty=textPropertyIri

In addition to the resource’s Iri, the Iri of the property containing the text with standoff has to be submitted. This will be converted to the TEI body.
Please note that the resource can only have one instance of this property and the text must have standoff markup.

The Knora test data contain the resource http://rdfh.ch/0001/thing_with_richtext_with_markup with the text property http://0.0.0.0:3333/ontology/0001/anything/v2#hasRichtext that can be converted to TEI as follows:

HTTP GET to http://host/v2/tei/http%3A%2F%2Frdfh.ch%2F0001%2Fthing_with_richtext_with_markup?textProperty=http%3A%2F%2F0.0.0.0%3A3333%2Fontology%2F0001%2Fanything%2Fv2%23hasRichtext

The answer to this request is a TEI XML document:

<?xml version="1.0" encoding="UTF-8"?>
<TEI xmlns="http://www.tei-c.org/ns/1.0" version="3.3.0">
 <teiHeader>
 <fileDesc>
 <titleStmt>
 <title>test thing with markup</title>
 </titleStmt>
 <publicationStmt>
 <p>
 This is the TEI/XML representation of a resource identified by the Iri http://rdfh.ch/0001/thing_with_richtext_with_markup.
 </p>
 </publicationStmt>
 <sourceDesc>
 <p>Representation of the resource's text as TEI/XML</p>
 </sourceDesc>
 </fileDesc>
 </teiHeader>
 <text>
 <body>
 <p>This is a test that contains marked up elements. This is <hi rend="italic">interesting text</hi> in italics. This is <hi rend="italic">boring text</hi> in italics.</p>
 </body>
 </text>
</TEI>

The body of the TEI document contains the standoff markup as XML. The header contains contains some basic metadata about the resource such as the rdfs:label an its IRI. However, this might not be sufficient for more advanced use cases like digital edition projects.
In that case, a custom conversion has to be performed (see below).

Custom Conversion

If a project defines its own standoff entities, a custom conversion can be provided (body of the TEI document). Also for the TEI header, a custom conversion can be provided.

For the custom conversion, additional configuration is required.

TEI body:

	additional mapping from standoff to XML (URL parameter mappingIri)

	XSL transformation to turn the XML into a valid TEI body (referred to by the mapping).

The mapping has to refer to a defaultXSLTransformation that transforms the XML that was created from standoff markup (see @ref:XML To Standoff Mapping in API v1). This step is necessary because the mapping assumes a one to one relation between standoff classes and properties and XML elements and attributes.
For example, we may want to convert a standoff:StandoffItalicTag into TEI/XML. TEI expresses this as <hi rend="italic">...</hi>. In the mapping, the standoff:StandoffItalicTag may be mapped to a a temporary XML element that is going to be converted to <hi rend="italic">...</hi> in a further step by the XSLT.

For sample data, see webapi/_test_data/test_route/texts/beol/BEOLTEIMapping.xml (mapping) and webapi/_test_data/test_route/texts/beol/standoffToTEI.xsl. The standoff entities are defined in beol-onto.ttl.

TEI header:

	Gravsearch template to query the resources metadata, results are serialized to RDF/XML (URL parameter gravsearchTemplateIri)

	XSL transformation to turn that RDF/XML into a valid TEI header (URL parameter teiHeaderXSLTIri)

The Gravsearch template is expected to be of type knora-base:TextRepresentation and to contain a placeholder $resourceIri that is to be replaced by the actual resource Iri.
The Gravsearch template is expected to contain a query involving the text property (URL parameter textProperty) and more properties that are going to be mapped to the TEI header. The Gravsearch template is a simple text file with the files extension .txt.

A Gravsearch template may look like this (see webapi/_test_data/test_route/texts/beol/gravsearch.txt):

PREFIX beol: <http://0.0.0.0:3333/ontology/0801/beol/simple/v2#>
PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v2#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

 CONSTRUCT {
 ?letter knora-api:isMainResource true .

 ?letter beol:creationDate ?date .

 ?letter beol:hasText ?text .

 ?letter beol:hasAuthor ?person1 .

 ?person1 beol:hasFamilyName ?name1 .

 ?person1 beol:hasGivenName ?givenName1 .

 ?person1 beol:hasIAFIdentifier ?iaf1 .

 ?letter beol:hasRecipient ?person2 .

 ?person2 beol:hasFamilyName ?name2 .

 ?person2 beol:hasGivenName ?givenName2 .

 ?person2 beol:hasIAFIdentifier ?iaf2 .

 } WHERE {
 BIND(<$resourceIri> as ?letter)
 ?letter a knora-api:Resource .
 ?letter a beol:letter .

 ?letter beol:creationDate ?date .

 beol:creationDate knora-api:objectType knora-api:Date .
 ?date a knora-api:Date .

 ?letter beol:hasText ?text .

 beol:hasText knora-api:objectType xsd:string .

 ?text a xsd:string .

 ?letter beol:hasAuthor ?person1 .

 ?person1 beol:hasFamilyName ?name1 .

 ?person1 beol:hasGivenName ?givenName1 .

 ?person1 beol:hasIAFIdentifier ?iaf1 .

 ?name1 a xsd:string .

 ?givenName1 a xsd:string .

 ?iaf1 a xsd:string .

 ?person2 beol:hasFamilyName ?name2 .

 ?person2 beol:hasGivenName ?givenName2 .

 ?person2 beol:hasIAFIdentifier ?iaf2 .

 ?name2 a xsd:string .

 ?givenName2 a xsd:string .

 ?iaf2 a xsd:string .

 beol:hasGivenName knora-api:objectType xsd:string .
 beol:hasFamilyName knora-api:objectType xsd:string .
 beol:hasIAFIdentifier knora-api:objectType xsd:string .

 	beol:hasAuthor knora-api:objectType knora-api:Resource .

 ?letter beol:hasRecipient ?person2 .

 	beol:hasRecipient knora-api:objectType knora-api:Resource .

 ?person1 a knora-api:Resource .
 ?person2 a knora-api:Resource .

 }

Note the placeholder BIND(<$resourceIri> as ?letter) that is going to be replaced by the Iri of the resource the request is performed for.
The query asks for information about the letter’s text beol:hasText and information about its author and recipient. This information is converted to the TEI header in the format required by correspSearch [https://correspsearch.net].

To write the XSLT, do the Gravsearch query and request the data as RDF/XML using content negotiation (see @ref:Introduction).

The Gravsearch query’s result may look like this (RDF/XML):

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
	xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
	xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
	xmlns:knora-api="http://api.knora.org/ontology/knora-api/v2#"
	xmlns:beol="http://0.0.0.0:3333/ontology/0801/beol/v2#">
<beol:letter rdf:about="http://rdfh.ch/0801/MbZdHVcsR_Ky5pZoytaiBA">
	<beol:creationDate rdf:resource="http://rdfh.ch/0801/MbZdHVcsR_Ky5pZoytaiBA/values/Ob_1YRO_QmaDxTRI64vGOQ"/>
	<beol:hasAuthorValue rdf:resource="http://rdfh.ch/0801/MbZdHVcsR_Ky5pZoytaiBA/values/zt4a3XoESTq9To4mSN8Dug"/>
	<beol:hasRecipientValue rdf:resource="http://rdfh.ch/0801/MbZdHVcsR_Ky5pZoytaiBA/values/pVerHO_FRXePZQT9kgEp_Q"/>
	<rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Testletter</rdfs:label>
</beol:letter>
<knora-api:DateValue rdf:about="http://rdfh.ch/0801/MbZdHVcsR_Ky5pZoytaiBA/values/Ob_1YRO_QmaDxTRI64vGOQ">
	<knora-api:dateValueHasCalendar rdf:datatype="http://www.w3.org/2001/XMLSchema#string">GREGORIAN</knora-api:dateValueHasCalendar>
	<knora-api:dateValueHasEndDay rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">10</knora-api:dateValueHasEndDay>
	<knora-api:dateValueHasEndEra rdf:datatype="http://www.w3.org/2001/XMLSchema#string">CE</knora-api:dateValueHasEndEra>
	<knora-api:dateValueHasEndMonth rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">6</knora-api:dateValueHasEndMonth>
	<knora-api:dateValueHasEndYear rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">1703</knora-api:dateValueHasEndYear>
	<knora-api:dateValueHasStartDay rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">10</knora-api:dateValueHasStartDay>
	<knora-api:dateValueHasStartEra rdf:datatype="http://www.w3.org/2001/XMLSchema#string">CE</knora-api:dateValueHasStartEra>
	<knora-api:dateValueHasStartMonth rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">6</knora-api:dateValueHasStartMonth>
	<knora-api:dateValueHasStartYear rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">1703</knora-api:dateValueHasStartYear>
	<knora-api:valueAsString rdf:datatype="http://www.w3.org/2001/XMLSchema#string">GREGORIAN:1703-06-10 CE</knora-api:valueAsString>
</knora-api:DateValue>
<knora-api:LinkValue rdf:about="http://rdfh.ch/0801/MbZdHVcsR_Ky5pZoytaiBA/values/zt4a3XoESTq9To4mSN8Dug">
	<knora-api:linkValueHasTarget>
		<beol:person rdf:about="http://rdfh.ch/0801/_9LEnLM7TFuPRjTshOTJpQ">
			<beol:hasFamilyName rdf:resource="http://rdfh.ch/0801/_9LEnLM7TFuPRjTshOTJpQ/values/NG42jDqSTz2U35N6sJ8cqg"/>
			<beol:hasGivenName rdf:resource="http://rdfh.ch/0801/_9LEnLM7TFuPRjTshOTJpQ/values/W2lVG1mvQU2MauAvCGB13w"/>
			<beol:hasIAFIdentifier rdf:resource="http://rdfh.ch/0801/_9LEnLM7TFuPRjTshOTJpQ/values/N2TVtntdToqJQpdZhYPc5g"/>
			<rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Johann Jacob Scheuchzer</rdfs:label>
		</beol:person>
	</knora-api:linkValueHasTarget>
</knora-api:LinkValue>
<knora-api:TextValue rdf:about="http://rdfh.ch/0801/_9LEnLM7TFuPRjTshOTJpQ/values/NG42jDqSTz2U35N6sJ8cqg">
	<knora-api:valueAsString rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Scheuchzer</knora-api:valueAsString>
</knora-api:TextValue>
<knora-api:TextValue rdf:about="http://rdfh.ch/0801/_9LEnLM7TFuPRjTshOTJpQ/values/W2lVG1mvQU2MauAvCGB13w">
	<knora-api:valueAsString rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Johann Jacob</knora-api:valueAsString>
</knora-api:TextValue>
<knora-api:TextValue rdf:about="http://rdfh.ch/0801/_9LEnLM7TFuPRjTshOTJpQ/values/N2TVtntdToqJQpdZhYPc5g">
	<knora-api:valueAsString rdf:datatype="http://www.w3.org/2001/XMLSchema#string">(DE-588)118607308</knora-api:valueAsString>
</knora-api:TextValue>
<knora-api:LinkValue rdf:about="http://rdfh.ch/0801/MbZdHVcsR_Ky5pZoytaiBA/values/pVerHO_FRXePZQT9kgEp_Q">
	<knora-api:linkValueHasTarget>
		<beol:person rdf:about="http://rdfh.ch/0801/JaQwPsYEQJ6GQrAgKC0Gkw">
			<beol:hasFamilyName rdf:resource="http://rdfh.ch/0801/JaQwPsYEQJ6GQrAgKC0Gkw/values/k1Exqf93SsWi7LWK9ozXkw"/>
			<beol:hasGivenName rdf:resource="http://rdfh.ch/0801/JaQwPsYEQJ6GQrAgKC0Gkw/values/gkqK5Ij_R7mtO59xfSDGJA"/>
			<beol:hasIAFIdentifier rdf:resource="http://rdfh.ch/0801/JaQwPsYEQJ6GQrAgKC0Gkw/values/C-Dl15S-SV63L1KCCPFfew"/>
			<rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Jacob Hermann</rdfs:label>
		</beol:person>
	</knora-api:linkValueHasTarget>
</knora-api:LinkValue>
<knora-api:TextValue rdf:about="http://rdfh.ch/0801/JaQwPsYEQJ6GQrAgKC0Gkw/values/k1Exqf93SsWi7LWK9ozXkw">
	<knora-api:valueAsString rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Hermann</knora-api:valueAsString>
</knora-api:TextValue>
<knora-api:TextValue rdf:about="http://rdfh.ch/0801/JaQwPsYEQJ6GQrAgKC0Gkw/values/gkqK5Ij_R7mtO59xfSDGJA">
	<knora-api:valueAsString rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Jacob</knora-api:valueAsString>
</knora-api:TextValue>
<knora-api:TextValue rdf:about="http://rdfh.ch/0801/JaQwPsYEQJ6GQrAgKC0Gkw/values/C-Dl15S-SV63L1KCCPFfew">
	<knora-api:valueAsString rdf:datatype="http://www.w3.org/2001/XMLSchema#string">(DE-588)119112450</knora-api:valueAsString>
</knora-api:TextValue>

</rdf:RDF>

In order to convert the metadata (not the actual standoff markup), a knora-base:knora-base:XSLTransformation has to be provided. For our example, it looks like this (see webapi/_test_data/test_route/texts/beol/header.xsl):

<?xml version="1.0" encoding="UTF-8"?>
<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs1="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:beol="http://0.0.0.0:3333/ontology/0801/beol/v2#"
 xmlns:knora-api="http://api.knora.org/ontology/knora-api/v2#"
 exclude-result-prefixes="rdf beol knora-api xs rdfs1" version="2.0">

 <xsl:output method="xml" omit-xml-declaration="yes" encoding="utf-8" indent="yes"/>

 <!-- make IAF id a URL -->
 <xsl:function name="knora-api:iaf" as="xs:anyURI">
 <xsl:param name="input" as="xs:string"/>
 <xsl:value-of select="replace($input, '\(DE-588\)', 'http://d-nb.info/gnd/')"/>
 </xsl:function>

 <!-- make a standard date (Gregorian calendar assumed) -->
 <xsl:function name="knora-api:dateformat" as="element()*">
 <xsl:param name="input" as="element()*"/>

 <xsl:choose>
 <xsl:when test="$input/knora-api:dateValueHasStartYear/text() = $input/knora-api:dateValueHasEndYear/text() and $input/knora-api:dateValueHasStartMonth/text() = $input/knora-api:dateValueHasEndMonth/text() and $input/knora-api:dateValueHasStartDay/text() = $input/knora-api:dateValueHasEndDay/text()">
 <!-- no period, day precision -->
 <date>
 <xsl:attribute name="when">
 <xsl:value-of select="format-number($input/knora-api:dateValueHasStartYear/text(), '0000')"/>-<xsl:value-of select="format-number($input/knora-api:dateValueHasStartMonth/text(), '00')"/>-<xsl:value-of select="format-number($input/knora-api:dateValueHasStartMonth/text(), '00')"/>
 </xsl:attribute>
 </date>

 </xsl:when>
 <xsl:otherwise>
 <!-- period -->
 <date>
 <xsl:attribute name="notBefore">
 <xsl:value-of select="format-number($input/knora-api:dateValueHasStartYear/text(), '0000')"/>-<xsl:value-of select="format-number($input/knora-api:dateValueHasStartMonth/text(), '00')"/>-<xsl:value-of select="format-number($input/knora-api:dateValueHasStartDay/text(), '00')"/>
 </xsl:attribute>

 <xsl:attribute name="notAfter">
 <xsl:value-of select="format-number($input/knora-api:dateValueHasEndYear/text(), '0000')"/>-<xsl:value-of select="format-number($input/knora-api:dateValueHasEndMonth/text(), '00')"/>-<xsl:value-of select="format-number($input/knora-api:dateValueHasEndDay/text(), '00')"/>
 </xsl:attribute>
 </date>

 </xsl:otherwise>
 </xsl:choose>

 </xsl:function>

 <xsl:template match="rdf:RDF">
 <xsl:variable name="resourceIri" select="beol:letter/@rdf:about"/>
 <xsl:variable name="label" select="beol:letter/rdfs1:label/text()"/>

 <teiHeader>
 <fileDesc>
 <titleStmt>
 <title>
 <xsl:value-of select="$label"/>
 </title>
 </titleStmt>
 <publicationStmt>
 <p> This is the TEI/XML representation of the resource identified by the Iri
 <xsl:value-of select="$resourceIri"/>. </p>
 </publicationStmt>
 <sourceDesc>
 <p>Representation of the resource's text as TEI/XML</p>
 </sourceDesc>
 </fileDesc>
 <profileDesc>

 <correspDesc>
 <xsl:attribute name="ref">
 <xsl:value-of select="$resourceIri"/>
 </xsl:attribute>
 <xsl:apply-templates/>
 </correspDesc>
 </profileDesc>
 </teiHeader>
 </xsl:template>

 <xsl:template match="beol:letter/beol:hasAuthorValue">
 <xsl:variable name="authorValue" select="@rdf:resource"/>

 <xsl:variable name="authorIAFValue"
 select="//knora-api:LinkValue[@rdf:about=$authorValue]//beol:hasIAFIdentifier/@rdf:resource"/>
 <xsl:variable name="authorFamilyNameValue"
 select="//knora-api:LinkValue[@rdf:about=$authorValue]//beol:hasFamilyName/@rdf:resource"/>
 <xsl:variable name="authorGivenNameValue"
 select="//knora-api:LinkValue[@rdf:about=$authorValue]//beol:hasGivenName/@rdf:resource"/>

 <correspAction type="sent">

 <xsl:variable name="authorIAFText"
 select="//knora-api:TextValue[@rdf:about=$authorIAFValue]/knora-api:valueAsString/text()"/>
 <xsl:variable name="authorFamilyNameText"
 select="//knora-api:TextValue[@rdf:about=$authorFamilyNameValue]/knora-api:valueAsString/text()"/>
 <xsl:variable name="authorGivenNameText"
 select="//knora-api:TextValue[@rdf:about=$authorGivenNameValue]/knora-api:valueAsString/text()"/>

 <persName>
 <xsl:attribute name="ref"><xsl:value-of select="knora-api:iaf($authorIAFText)"
 /></xsl:attribute>
 <xsl:value-of select="$authorFamilyNameText"/>, <xsl:value-of
 select="$authorGivenNameText"/>
 </persName>

 <xsl:variable name="dateValue" select="//beol:creationDate/@rdf:resource"/>

 <xsl:variable name="dateObj"
 select="//knora-api:DateValue[@rdf:about=$dateValue]"/>

 <xsl:copy-of select="knora-api:dateformat($dateObj)"/>

 </correspAction>
 </xsl:template>

 <xsl:template match="beol:letter/beol:hasRecipientValue">
 <xsl:variable name="recipientValue" select="@rdf:resource"/>

 <xsl:variable name="recipientIAFValue"
 select="//knora-api:LinkValue[@rdf:about=$recipientValue]//beol:hasIAFIdentifier/@rdf:resource"/>
 <xsl:variable name="recipientFamilyNameValue"
 select="//knora-api:LinkValue[@rdf:about=$recipientValue]//beol:hasFamilyName/@rdf:resource"/>
 <xsl:variable name="recipientGivenNameValue"
 select="//knora-api:LinkValue[@rdf:about=$recipientValue]//beol:hasGivenName/@rdf:resource"/>

 <correspAction type="received">

 <xsl:variable name="recipientIAFText"
 select="//knora-api:TextValue[@rdf:about=$recipientIAFValue]/knora-api:valueAsString/text()"/>
 <xsl:variable name="recipientFamilyNameText"
 select="//knora-api:TextValue[@rdf:about=$recipientFamilyNameValue]/knora-api:valueAsString/text()"/>
 <xsl:variable name="recipientGivenNameText"
 select="//knora-api:TextValue[@rdf:about=$recipientGivenNameValue]/knora-api:valueAsString/text()"/>

 <persName>
 <xsl:attribute name="ref"><xsl:value-of select="knora-api:iaf($recipientIAFText)"
 /></xsl:attribute>
 <xsl:value-of select="$recipientFamilyNameText"/>, <xsl:value-of
 select="$recipientGivenNameText"/>
 </persName>

 </correspAction>
 </xsl:template>

 <!-- ignore text if there is no template for the element containing it -->
 <xsl:template match="text()"> </xsl:template>

</xsl:transform>

You can use the functions knora-api:iaf and knora-api:dateformat in your own XSLT in case you want to support correspSearch.

The complete request looks like this:

HTTP GET request to http://host/v2/tei/resourceIri&textProperty=textPropertyIri&mappingIri=mappingIri&gravsearchTemplateIri=gravsearchTemplateIri&teiHeaderXSLTIri=teiHeaderXSLTIri

See webapi/src/it/scala/org/knora/webapi/e2e/v1/KnoraSipiIntegrationV1ITSpec.scala for a complete test case involving the sample data (“create a mapping for standoff conversion to TEI referring to an XSLT and also create a Gravsearch template and an XSLT for transforming TEI header data”).

When you provide a custom conversion, it is up to you to ensure the validity of the TEI document. You can use this service to validate: TEI by example validator [http://teibyexample.org/xquery/TBEvalidator.xq].
Problems and bugs caused by XSL transformations are out of scope of the responsibility of the Knora software.

XML to Standoff Mapping in API v2

@@toc

General Information

Please see v1 documentation for general information about the XML to standoff mapping: @ref:XML To Standoff Mapping in API v1.

Validating a Mapping and sending it to Knora

A mapping can be validated before sending it to Knora with the following
XML Schema file: webapi/src/resources/mappingXMLToStandoff.xsd. Any
mapping that does not conform to this XML Schema file will be rejected
by Knora.

The mapping has to be sent as a multipart request to the standoff route
using the path segment mapping:

HTTP POST http://host/v2/mapping

The multipart request consists of two named parts:

"json":

 {
 "knora-api:mappingHasName": "My Mapping",
 "knora-api:attachedToProject": "projectIRI",
 "rdfs:label": "MappingNameSegment",
 "@context": {
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
 "knora-api": "http://api.knora.org/ontology/knora-api/v2#"
 }
 }

"xml":

 <?xml version="1.0" encoding="UTF-8"?>
 <mapping>
 ...
 </mapping>

A successful response returns the Iri of the mapping. However, the Iri
of a mapping is predictable: it consists of the project Iri followed by
/mappings/ and the knora-api:mappingHasName submitted in the JSON-LD (if the name
already exists, the request will be rejected). Once created, a mapping
can be used to create TextValues in Knora. The formats are documented in
the v2 typescript interfaces AddMappingRequest and AddMappingResponse
in module MappingFormats

Configuration

All configuration for Knora is done in application.conf. Besides the Knora application
specific configuration, there we can also find configuration for the underlying Akka library.

For optimal performance it is important to tune the configuration to the hardware used, mainly
to the number of CPUs and cores per CPU.

The relevant sections for tuning are:

	akka.actor.deployment

	knora-actor-dispatcher

	knora-blocking-dispatcher

System Environment Variables

A number of core settings is additionally configurable through system environment variables. These are:

key in application.conf	environment variable	default value
————————————————————-	—————————————————————–	———————-
akka.log-config-on-start	KNORA_AKKA_LOG_CONFIG_ON_START	off
akka.loglevel	KNORA_AKKA_LOGLEVEL	INFO
akka.actor.deployment.httpTriplestoreRouter.nr-of-instances	KNORA_WEBAPI_DB_CONNECTIONS	2
akka.stdout-loglevel	KNORA_AKKA_STDOUT_LOGLEVEL	INFO
app.print-short-config	KNORA_WEBAPI_PRINT_SHORT_CONFIG	true
app.print-extended-config	KNORA_WEBAPI_PRINT_EXTENDED_CONFIG	false
app.bcrypt-password-strength	KNORA_WEBAPI_BCRYPT_PASSWORD_STRENGTH	12
app.jwt-secret-key	KNORA_WEBAPI_JWT_SECRET_KEY	super-secret-key
app.jwt-longevity	KNORA_WEBAPI_JWT_LONGEVITY	30 days
app.cookie-domain	KNORA_WEBAPI_COOKIE_DOMAIN	localhost
app.allow-reload-over-http	KNORA_WEBAPI_ALLOW_RELOAD_OVER_HTTP	false
app.ark.resolver	KNORA_WEBAPI_ARK_RESOLVER_URL	http://0.0.0.0:3336
app.ark.assigned-number	KNORA_WEBAPI_ARK_NAAN	72163
app.knora-api.internal-host	KNORA_WEBAPI_KNORA_API_INTERNAL_HOST	0.0.0.0
app.knora-api.internal-port	KNORA_WEBAPI_KNORA_API_INTERNAL_PORT	3333
app.knora-api.external-protocol	KNORA_WEBAPI_KNORA_API_EXTERNAL_PROTOCOL	http
app.knora-api.external-host	KNORA_WEBAPI_KNORA_API_EXTERNAL_HOST	0.0.0.0
app.knora-api.external-port	KNORA_WEBAPI_KNORA_API_EXTERNAL_PORT	3333
app.sipi.internal-protocol	KNORA_WEBAPI_SIPI_INTERNAL_PROTOCOL	http
app.sipi.internal-host	KNORA_WEBAPI_SIPI_INTERNAL_HOST	localhost
app.sipi.internal-port	KNORA_WEBAPI_SIPI_INTERNAL_PORT	1024
app.sipi.external-protocol	KNORA_WEBAPI_SIPI_EXTERNAL_PROTOCOL	http
app.sipi.external-host	KNORA_WEBAPI_SIPI_EXTERNAL_HOST	localhost
app.sipi.external-port	KNORA_WEBAPI_SIPI_EXTERNAL_PORT	443
app.ark.resolver	KNORA_WEBAPI_ARK_RESOLVER_URL	http://0.0.0.0:3336
app.ark.assigned-number	KNORA_WEBAPI_ARK_NAAN	72163
app.salsah1.base-url	KNORA_WEBAPI_SALSAH1_BASE_URL	http://localhost:3335
app.triplestore.dbtype	KNORA_WEBAPI_TRIPLESTORE_DBTYPE	graphdb-se
app.triplestore.use-https	KNORA_WEBAPI_TRIPLESTORE_USE_HTTPS	false
app.triplestore.host	KNORA_WEBAPI_TRIPLESTORE_HOST	localhost
app.triplestore.graphdb.port	KNORA_WEBAPI_TRIPLESTORE_GRAPHDB_PORT	7200
app.triplestore.graphdb.repository-name	KNORA_WEBAPI_TRIPLESTORE_GRAPHDB_REPOSITORY_NAME	knora-test
app.triplestore.graphdb.username	KNORA_WEBAPI_TRIPLESTORE_GRAPHDB_USERNAME	admin
app.triplestore.graphdb.password	KNORA_WEBAPI_TRIPLESTORE_GRAPHDB_PASSWORD	root
app.triplestore.fuseki.port	KNORA_WEBAPI_TRIPLESTORE_FUSEKI_PORT	3030
app.triplestore.fuseki.repository-name	KNORA_WEBAPI_TRIPLESTORE_FUSEKI_REPOSITORY_NAME	knora-test
app.cache-service.enabled	KNORA_WEBAPI_CACHE_SERVICE_ENABLED	true
app.cache-service.redis.host	KNORA_WEBAPI_CACHE_SERVICE_REDIS_HOST	localhost
app.cache-service.redis.port	KNORA_WEBAPI_CACHE_SERVICE_REDIS_PORT	6379

Selectively Disabling Routes

In application.conf the setting app.routes-to-reject contains a list
of strings, representing routes which should be rejected.

For Example, the string "v1/users" would lead to rejection of any
route which contains this string.

Startup Flags

There is a number of flags that can be set on startup, they will
override any value set in the application configuration file:

	loadDemoData, --loadDemoData, -d: Loads the demo data.

	allowReloadOverHTTP, --allow-reload-over-http, -r: Allows
reloading of data over HTTP.

	-c: Print the configuration at startup.

	--help: Shows the help message with all startup flags.

Getting Started with Knora

Running Knora locally or on a server requires Docker [https://www.docker.com], which
can be freely downloaded. Please follow the instructions for installing
Docker Desktop [https://www.docker.com/products/docker-desktop].

Additional software:

	Apple Xcode [https://itunes.apple.com/us/app/xcode/id497799835]

	git

	expect

	sbt

	java 11

These can be easily installed on macOS using Homebrew [https://brew.sh]:

$ brew install git
$ brew install expect
$ brew install sbt

To install Adoptopenjdk Java 11 with Homebrew [https://brew.sh]:

$ brew tap AdoptOpenJDK/openjdk
$ brew cask install AdoptOpenJDK/openjdk/adoptopenjdk11

To pin the version of Java, please add this environment variable to you startup script (bashrc, etc.):

export JAVA_HOME=`/usr/libexec/java_home -v 11`

Choosing a Triplestore

Knora requires a standards-compliant
RDF [https://www.w3.org/TR/rdf11-primer/] triplestore. A number of
triplestore implementations are available, including free
software [http://www.gnu.org/philosophy/free-sw.en.html] as well as
proprietary options.

Knora is designed to work with any standards-compliant
triplestore. It is primarily tested with Ontotext
GraphDB [http://ontotext.com/products/graphdb/], a high-performance,
proprietary triplestore. We recommend GraphDB Standard Edition, but
GraphDB Free (which is proprietary but available free of charge) also
works, where both need to be licensed separately from
Ontotext (http://ontotext.com). GraphDB-Free can be simply licensed by filling out
their registration from.

Built-in support and configuration for other triplestores is planned.

Running the Knora-Stack

Use git to clone the Knora repository from Github [https://github.com/dhlab-basel/Knora].

After having GraphDB licensed, you need to set some environment variables:

GraphDB-Free:

The following environment variables are optional:

$ export KNORA_GDB_IMPORT=/path/to/some/folder - sets the path to the import directory accessible from inside the GraphDB Workbench
$ export KNORA_GDB_HOME=/path/to/some/other_folder // sets the path to the folder where GraphDB will store the database files

GraphDB-SE:

The following environment variable is required:

export KNORA_GDB_LICENSE=/path/to/license/file - sets the path to the GraphDB-SE license file

The following environment variables are optional:

$ export KNORA_GDB_IMPORT=/path/to/some/folder - sets the path to the import directory accessible from inside the GraphDB Workbench
$ export KNORA_GDB_HOME=/path/to/some/other_folder // sets the path to the folder where GraphDB will store the database files

Then from inside the cloned Knora repository folder, run:

$ make stack-up

Creating Repositories and Loading Test Data

To create a test repository called knora-test and load test data, run:

	For GraphDB-SE: $ make init-db-test.

	For GraphDB-Free: $ make init-db-test-free.

The scripts called by make can be found under webapi/scripts. You can
create your own scripts based on these scripts, to create new
repositories and optionally to load existing Knora-compliant RDF data
into them.

If you are using GraphDB, you must create your repository using a
repository configuration file that specifies the file KnoraRules.pie
as its owlim:ruleset. This enables RDFS inference and Knora-specific
consistency rules. When using GraphDB, Knora uses RDFS inference to improve
query performance. The Knora-specific consistency rules help ensure that your
data is internally consistent and conforms to the Knora ontologies.

This file is already packaged inside Knora’s Docker images for GraphDB-SE and
GraphDB-Free.

When testing with GraphDB, you may sometimes get an error when loading
the test data that says that there are multiple IDs for the same
repository knora-test. In that case, something went wrong when
dropping and recreating the repository. You can solve this by deleting
the repository manually and starting over. Make sure you don’t delete
important data. To delete the repository, stop GraphDB, delete the
data directory in your GraphDB installation, and restart GraphDB.

Deploying Knora

@@toc { depth=1 }

@@@ index

	Publishing

	Getting Started with Knora

	Configuration

	Updating Repositories When Upgrading Knora

@@@

Publishing

Knora is published as a set of Docker [https://www.docker.com] images under the
DHLab Basel Dockerhub Organization [https://hub.docker.com/u/dhlabbasel].

The following Docker images are published:

	Knora-API:

	https://hub.docker.com/r/daschswiss/knora-api

	GraphDB-SE (includes KnoraRules.pie):

	https://hub.docker.com/r/daschswiss/knora-graphdb-se

	GraphDB-Free (includes KnoraRules.pie):

	https://hub.docker.com/r/daschswiss/knora-graphdb-free

	Sipi (includes Knora’s Sipi scripts):

	https://hub.docker.com/r/daschswiss/knora-sipi

	Knora-Assets (Knora-Base ontologies, test data, and scripts):

	https://hub.docker.com/r/daschswiss/knora-assets

	Knora-Upgrade (Knora upgrade tool):

	https://hub.docker.com/r/daschswiss/knora-upgrade

	Salsah 1:

	https://hub.docker.com/r/daschswiss/knora-salsah1

	Salsah 2:

	https://hub.docker.com/r/daschswiss/knora-app-web

Knora’s Docker images are published automatically through Github CI each time a pull-request
is merged into the develop branch.

Each image is tagged with a version number, where the version is derived by using the result
of git describe. The describe version is built from the
last tag + number of commits since tag + short hash, e.g., 8.0.0-7-ga7827e9.

The images can be published locally by running:

$ make build-all-images

or to Dockerhub:

$ make publish-all-images

GraphDB Licensing

GraphDB-Free is the Free Edition of the triplestore from Ontotext (http://ontotext.com).
GraphDB-Free must be licensed separately by the user, by registering with Ontotext, i.e.
filling out the form for downloading the free edition.

GraphDB-SE is the Standard Edition of the triplestore from Ontotext (http://ontotext.com).

GraphDB-SE must be licensed separately by the user.

Updating Repositories When Upgrading Knora

@@toc

When a new version of Knora introduces changes that are not backwards-compatible
with existing data, you will need to update your repository. First, back up
your repository. Then follow the instructions below for the Knora version that
you are upgrading from.

Upgrading from Knora 7.0.0 or Later

Automatic Upgrade

The automatic upgrade procedure dumps your repository to a file, determines which transformations
are needed, transforms the file, then loads the transformed file back into the repository.
To perform an automatic upgrade, open a shell in the directory upgrade/graphdb-se and run the script
./auto-upgrade.sh. You must be in that directory when you run the script. For information on its
command line options, run it without arguments, or see the README.md in that directory for details.

Manual Upgrade

If you need more control over the process (e.g. you want to use
GraphDB’s LoadRDF [http://graphdb.ontotext.com/documentation/free/loading-data-using-the-loadrdf-tool.html]
tool to upload the transformed file), follow the steps below.

1. Dump the Repository to a TriG File

You can use the dump-repository.sh script in upgrade/graphdb-se. See
the README.md there for instructions.

2. Transform the TriG File

In the knora-api directory of the version of Knora you are upgrading to, run:

sbt "upgrade/run INPUT_FILE OUTPUT_FILE"

For INPUT_FILE, use the absolute path of the TriG file you downloaded in
step 1.

For OUTPUT_FILE, use the absolute path of the transformed TriG file to
be created.

The program automatically determines which transformations are needed.
If the repository is already up to date, the program will say so, and no
output file will be written. In this case, there is nothing more to do.
Otherwise, proceed to step 3.

3. Empty the Repository

The transformed TriG file must be loaded into an empty repository.
To empty the repository, you can use the empty-repository.sh script in
upgrade/graphdb-se. See the README.md there for instructions.
Make sure you have backed up the repository first.

4. Load the Transformed TriG File into the Repository

You can use the upload-repository.sh script in upgrade/graphdb-se. See
the README.md there for instructions.

If the file is very large, it may be more efficient to load it offline,
using GraphDB’s LoadRDF [http://graphdb.ontotext.com/documentation/free/loading-data-using-the-loadrdf-tool.html]
tool.

Upgrading from a Knora Version Before 7.0.0

First, read the general instructions in upgrade/graphdb-se/old/README.md.

Upgrading from Knora 6.0.0 or 6.0.1

	Follow the instructions in upgrade/graphdb-se/old/1263-knora-admin/README.md.

	Follow the instructions in
@ref:Upgrading from Knora 7.0.0 or Later.

Upgrading from Knora 5.0.0

	Follow the instructions in upgrade/graphdb-se/old/1211-datetime/README.md.

	Follow the instructions in upgrade/graphdb-se/old/1230-delete-previews/README.md.

	Follow the instructions in upgrade/graphdb-se/old/1263-knora-admin/README.md.

	Follow the instructions in
@ref:Upgrading from Knora 7.0.0 or Later.

Knora Internals

@@toc { depth=2 }

@@@ index

	Design

	Development

@@@

Design

@@toc { depth=1 }

@@@ index

	Knora Design Principles

	API v1 Design

	API v2 Design

	Admin API Design

	Client API Code Generation Framework

@@@

Administration (Users, Projects, Groups, Institutions, Permissions)

@@toc

Scope

This Section includes management (creation, updating, deletion) of
Users, Projects, Groups, Institutions, and Permissions.

Implementation

All administration functions will be implemented as part of the Knora
API in the webapi codebase. There is also a separate web-application
as part of the salsah codebase using this API, allowing basic
management operations.

Overview

During the initial deployment of a Knora server, the main administration
user (root) is created. This root user has the right to do anything.

Knora’s concept of access control is that permissions can only be
granted to groups (or the whole project, i.e. all members of a project)
and not to individual users. There are two distinct ways of granting
permission. Firstly, an object (a resource or value) can grant
permissions to groups of users, and secondly, permissions can be granted
directly to a group of users (not bound to a specific object). There are
six built-in groups: UnknownUser, KnownUser, Creator,
ProjectMember, ProjectAdmin, and SystemAdmin. These groups can be
used in the same way as normal user created groups for permission
management, i.e. can be used to give certain groups of users, certain
permissions, without the need to explicitly create them.

A user becomes implicitly a member of such a group by satisfying certain
conditions:

	knora-admin:UnknownUser:Any user who has not logged into Knora is
automatically assigned to this group.

	knora-admin:KnownUser:Any user who has logged into Knora is automatically
assigned to this group.

	knora-admin:Creator:When checking a user’s permissions on an object, the user is
automatically assigned to this group if he is the creator of the
object.

	knora-admin:ProjectMember:When checking a user’s permissions, the user is automatically
assigned to this group by being a member of a project designated by
the knora-admin:isInProject property.

	knora-admin:ProjectAdmin:When checking a user’s permission, the user is automatically
assigned to this group through the
knora-admin:isInProjectAdminGroup property, which points to the
project in question.

	knora-admin:SystemAdmin:Membership is received by setting the property
knora-admin:isInSystemAdminGroup to true on a knora-admin:User.

To use these build-in groups as values for properties (Object Access and
Default Permissions), the IRI is constructed by appending the name of
the built-in group to knora-admin, e.g., knora-admin:KnownUser where
knora-admin corresponds to http://www.knora.org/ontology/knora-admin#.

Permissions

Up until know, we have mentioned two groups of permissions. The first
called object access permissions, which contains permissions that
point from explicit objects (resources/values) to groups. The second
group of permissions called administrative permissions, and which
contains permissions that are put on instances of
knora-admin:Permission objects directly affecting groups. There is
another, third group of permissions, called default object access
permissions which is also put on instances of knora-admin:Permission,
and which also directly affect groups.

Object Access Permissions

An object (resource / value) can grant the following permissions, which
are stored in a compact format in a single string, which is the object
of the predicate knora-base:hasPermissions:

	Restricted view permission (RV): Allows a restricted view of
the object, e.g. a view of an image with a watermark.

	View permission (V): Allows an unrestricted view of the
object. Having view permission on a resource only affects the
user’s ability to view information about the resource other than
its values. To view a value, she must have view permission on the
value itself.

	Modify permission (M): For values, this permission allows a
new version of a value to be created. For resources, this allows
the user to create a new value (as opposed to a new version of an
existing value), or to change information about the resource other
than its values. When he wants to make a new version of a value,
his permissions on the containing resource are not relevant.
However, when he wants to change the target of a link, the old
link must be deleted and a new one created, so he needs modify
permission on the resource.

	Delete permission (D): Allows the item to be marked as
deleted.

	Change rights permission (CR): Allows the permissions granted
by the object to be changed.

Each permission in the above list implies all lower-numbered
permissions.

A user’s permission level on a particular object is calculated in
the following way:

	Make a list of the groups that the user belongs to, including
Creator and/or ProjectMember and/or ProjectAdmin if applicable.

	Make a list of the permissions that she can obtain on the
object, by iterating over the permissions that the object
grants. For each permission, if she is in the specified group,
add the specified permission to the list of permissions she can
obtain.

	From the resulting list, select the highest-level permission.

	If the result is that she would have no permissions, give her
whatever permission UnknownUser would have.

The format of the object of knora-base:hasPermissions is as
follows:

	Each permission is represented by the one-letter or two-letter
abbreviation given above.

	Each permission abbreviation is followed by a space, then a
comma-separated list of groups that the permission is granted
to.

	The IRIs of built-in groups are shortened using the knora-admin
prefix.

	Multiple permissions are separated by a vertical bar (|).

For example, if an object grants view permission to unknown and known
users, and modify permission to project members, the resulting
permission literal would be:
:

V knora-admin:UnknownUser,knora-admin:KnownUser|M knora-admin:ProjectMember

Administrative Permissions

The following permissions can be set via instances of
knora-admin:AdministrativePermission on any group belonging to a
project. For users that are members of a number of groups with
administrative permissions attached, the final set of permissions is
additive and most permissive. The administrative permissions are stored
in a compact format in a single string, which is the object of the
predicate knora-base:hasPermissions attached to an instance of the
knora-admin:AdministrativePermission class. The following permission
values can be used:

	Resource / Value Creation Permissions:

	ProjectResourceCreateAllPermission:

	description: gives the permission to create resources
inside the project.

	usage: used as a value for knora-base:hasPermissions.

	ProjectResourceCreateRestrictedPermission:

	description: gives restricted resource creation permission
inside the project.

	usage: used as a value for knora-base:hasPermissions.

	value: RestrictedProjectResourceCreatePermission
followed by a comma-separated list of ResourceClasses
the user should only be able to create instances of.

	Project Administration Permissions:

	ProjectAdminAllPermission:

	description: gives the user the permission to do anything
on project level, i.e. create new groups, modify all
existing groups (group info, group membership,
resource creation permissions, project administration
permissions, and default permissions).

	usage: used as a value for knora-base:hasPermissions.

	ProjectAdminGroupAllPermission:

	description: gives the user the permission to modify
group info and group membership on all groups
belonging to the project.

	usage: used as a value for the knora-base:hasPermissions
property.

	ProjectAdminGroupRestrictedPermission:

	description: gives the user the permission to modify
group info and group membership on certain groups
belonging to the project.

	usage: used as a value for knora-base:hasPermissions

	value: ProjectGroupAdminRestrictedPermission followed by
a comma-separated list of knora-admin:UserGroup.

	ProjectAdminRightsAllPermission:

	description: gives the user the permission to change the
permissions on all objects belonging to the project
(e.g., default permissions attached to groups and
permissions on objects).

	usage: used as a value for the knora-base:hasPermissions
property.

	Ontology Administration Permissions:

	ProjectAdminOntologyAllPermission:

	description: gives the user the permission to administer
the project ontologies

	usage: used as a value for the knora-base:hasPermissions
property.

The administrative permissions are stored in a compact format in a
single string, which is the object of the predicate
knora-base:hasPermissions attached to an instance of the
knora-admin:AdministrativePermission class.

	The format of the object of knora-base:hasPermissions is as
follows:

	Each permission is represented by the name given above.

	Each permission is followed by a space, then if applicable, by a
comma separated list of IRIs, as defined above.

	The IRIs of built-in values (e.g., built-in groups, resource
classes, etc.) are shortened using the knora-admin prefix
knora-admin:.

	Multiple permissions are separated by a vertical bar (|).

For example, if an administrative permission grants the
knora-admin:ProjectMember group the permission to create all resources
(ProjectResourceCreateAllPermission), the resulting administrative
permission object with the compact form literal would be: :

<http://rdfh.ch/permissions/001
 rdf:type knora-admin:AdministrativePermission ;
 knora-admin:forProject <http://rdfh.ch/projects/00FF>;
 knora-admin:forGroup knora-admin:ProjectMember ;
 knora-base:hasPermissions "ProjectResourceCreateAllPermission"^^xsd:string .

Default Object Access Permissions

Default Object Access Permissions are used when new objects (resources
and/or values) are created. They represent object access permissions
with which the new object will be initially outfitted. As with
administrative permissions, these default object access permissions can
be defined for any number of groups. Additionally, they can be also
defined for resource classes and properties.

The following default object access permissions can be attached to
groups, resource classes and/or properties via instances of
knora-admin:DefaultObjectAccessPermission (described further bellow).
The default object access permissions correspond to the earlier
described object access permission:

	Default Restricted View Permission (RV):

	description: any object, created by a user inside a group
holding this permission, is restricted to carry this permission

	value: RV followed by a comma-separated list of
knora-admin:UserGroup

	Default View Permission (V):

	description: any object, created by a user inside a group
holding this permission, is restricted to carry this permission

	value: V followed by a comma-separated list of
knora-admin:UserGroup

	Default Modify Permission (M) accompanied by a list of groups.

	description: any object, created by a user inside a group
holding this permission, is restricted to carry this permission

	value: M followed by a comma-separated list of
knora-admin:UserGroup

	Default Delete Permission (D) accompanied by a list of groups.

	description: any object, created by a user inside a group
holding this permission, is restricted to carry this permission

	value: D followed by a comma-separated list of
knora-admin:UserGroup

	Default Change Rights Permission (CR) accompanied by a list of
groups.

	description: any object, created by a user inside a group
holding this permission, is restricted to carry this permission

	value: CR followed by a comma-separated list of
knora-admin:UserGroup

A single instance of knora-admin:DefaultObjectAccessPermission must
always reference a project, but can only reference either a group
(knora-admin:forGroup property), a resource class
(knora-admin:forResourceClass), a property (knora-admin:forProperty),
or a combination of resource class and property.

Example default object access permission instance:

<http://rdfh.ch/permissions/002
 rdf:type knora-admin:DefaultObjectAccessPermission ;
 knora-admin:forProject <http://rdfh.ch/projects/00FF>;
 knora-admin:forGroup knora-admin:ProjectMember ;
 knora-base:hasPermissions "CR knora-admin:Creator|M knora-admin:ProjectMember|V knora-admin:KnownUser"^^xsd:string .

This instance is setting default object access permissions to the
project member group of a project, giving change right permission to the
creator, modify permission to all project members, and view permission
to known users. Further, this implicitly applies to all resource
classes and all their properties inside the project.

Permission Precedence Rules

For both administrative permissions and default object access
permissions, the resulting permissions are derived by applying
precedence rules, for the case that the user is member of more than one
group.

The following list is sorted by the permission precedence level in
descending order:

	permissions on knora-admin:ProjectAdmin (highest level)

	permissions on resource classes and property combination (own
project)

	permissions on resource classes and property combination
(knora-admin:SystemProject)

	permissions on resource classes / properties (own project)

	permissions on resource classes / properties
(knora-admin:SystemProject)

	permissions on custom groups

	permissions on knora-admin:ProjectMember

	permissions on knora-admin:KnownUser (lowest level)

The permissions on resource classes / properties are only relevant for
default object access permissions.

Administrative Permissions: When a user performs an operation
requiring administrative permissions, then only the permissions from
the highest level are taken into account. If a user is a member of
more than one group on the same level (only possible for custom groups)
then the defined permissions are summed up and all are taken into
account.

Default Object Access Permissions: When a user creates a resource or
value, then only the default object permissions from the highest
level are applied. If a user is a member of more than one group on the
same level (only possible for custom groups) then the defined
permissions are summed up and the most permissive are applied.

In the case of users belonging to the SystemAdmin group, but which
are not members of a project and thus no group belonging to the project,
the default object access permissions from the highest defined
level will apply.

In the case of users belonging to the SystemAdmin group, but which
are not members of a project and thus not members of any group belonging
to the project, the default object access permissions from the
ProjectAdmin, ProjectMember, or KnownUser group will be
applied in the order of precedence. If no permissions are defined on
either of these groups, then the resulting permission will be CR knora-admin:Creator.

Also, in the case that no default object access permissions are
defined for the project, the resulting permission will be CR knora-admin:Creator.

Implicit Permissions

The knora-admin:SystemAdmin group receives implicitly the following
permissions:

	receives implicitly ProjectAllAdminPermission for all projects.

	receives implicitly ProjectResourceCreateAllPermission for all
projects.

	receives implicitly CR on all objects from all projects.

Theses permissions are baked into the system, and cannot be changed.

Permission Templates

The permission capabilities of Knora are very large, as it needs to be
able to satisfy a broad set of requirements. To simplify permission
management for the users, we provide permission templates, which can be
used during creation of new projects, or applied to existing projects. A
permission template defines a set of administrative and default object
access permission. Currently, two different templates will be defined
OPEN, CLOSED.

Template: OPEN

The OPEN template defines the following permissions:

	The knora-admin:ProjectAdmin group:

- receives explicitly *ProjectResourceCreateAllPermission*.
- receives explicitly *ProjectAllAdminPermission*.

	The knora-admin:ProjectMember group:

- receives explicitly *ProjectResourceCreateAllPermission*.
- receives explicitly *CR* for the *knora-admin:Creator* and
 knora-admin:ProjectAdmin group.
- receives explicitly *M* for the *ProjectMember* group.
- receives explicitly *V* for the *knora-admin:KnownUser*
 group.

Template: CLOSED

The CLOSED template, defined the following permissions:

	The knora-admin:ProjectAdmin group:

- receives explicitly *ProjectResourceCreateAllPermission*.
- receives explicitly *ProjectAllAdminPermission*.

	The knora-admin:ProjectMember group:

- receives explicitly *ProjectResourceCreateAllPermission*.
- receives explicitly *CR* for the *knora-admin:ProjectAdmin*
 group.
- receives explicitly *M* for the *ProjectMember* group.

Default Permissions Matrix for new Projects

The access control matrix defines what are the default operations a
subject (i.e. User), being a member of a built-in group (represented
by row headers), is permitted to perform on an object (represented by
column headers). The different operation abbreviations used are defined
as follows:

	C: Create - the subject inside the group is allowed to create the object.

	U: Update - the subject inside the group is allowed to update the object.

	R: Read - the subject inside the group is allowed to read all information about the object.

	D: Delete - the subject inside the group is allowed to delete the object.

	P: Permission - the subject inside the group is allowed to change the permissions on the object.

	-: none - none or not applicable

Built-In Group	Project	Group	User	Resource	Value
—————–	——-	——-	——————-	———————-	——————–
SystemAdmin	CRUD	CRUDP	CRUDP all	CRUDP all	CRUDP all
ProjectAdmin	-RUD	CRUDP	CRUDP +/- project	CRUDP (in project)	CRUDP (in project)
ProjectMember	----	-----	-----	CRUD- (in project)	----- (in project)
Creator	----	-----	-----	-RUDP (his resource)	----- (his value)
KnownUser	C---	C----	CRUD- himself	R---- (in project)	R---- (in project)

Default Permissions Matrix for new Projects

Basic Workflows involving Permissions

Creating a new Resource

[image: Figure 1]Figure 1

Accessing a Resource/Value

[image: Figure 2]Figure 1

Project / Group Administration

[image: Figure 3]Figure 1

Implementation

The requirements for defining default permissions imposed by all the
different use cases are very broad. Potentially, we need to be able to
define default permissions per project, per group, per resource class,
per resource property, and all their possible combinations.

For this reason, we introduce the knora-admin:Permission class with two
sub-classes, namely knora-admin:AdministrativePermission and
knora-admin:DefaultObjectAccessPermission, which instances will carry
all the necessary information.

Permission Class Hierarchy and Structure

The following graphs show the class hierarchy and the structure of each
permission class.

Permission Class Hierarchy

[image: Figure 4]Figure 1

Administrative Permission Structure:

[image: Figure 5]Figure 5

and the same as RDF:

<http://rdfh.ch/permissions/[UUID]> rdf:type knora-admin:AdministrativePermission ;
 knora-admin:forProject <http://rdfh.ch/projects/[shortcode]> ;
 knora-admin:forGroup <http://rdfh.ch/groups/[shortcode]/[UUID]> ;
 knora-base:hasPermissions "ProjectResourceCreateAllPermission|
 ProjectResourceCreateRestrictedPermission "<Resource Class IRI>"|
 ProjectAdminAllPermission|
 ProjectAdminGroupAllPermission|
 ProjectAdminGroupRestrictedPermission "<http://rdfh.ch/groups/[shortcode]/[UUID]>, <http://rdfh.ch/groups/[shortcode]/[UUID]>"|
 ProjectAdminRightsAllPermission|
 ProjectAdminOntologyAllPermission"^^xsd:string .

Default Object Access Permission Structure:

[image: Figure 6]Figure 5

and the same as RDF:

<http://rdfh.ch/permissions/[UUID]> rdf:type knora-admin:DefaultObjectAccessPermission ;
 knora-admin:forProject <http://rdfh.ch/projects/[shortcode]> ;
 knora-admin:forGroup <http://rdfh.ch/groups/[shortcode]/[UUID]> ;
 knora-admin:forResourceClass "Resource Class Name" ;
 knora-admin:forProperty "Resource Property Name" ;
 knora-base:hasPermissions "RV <http://rdfh.ch/groups/[shortcode]/[UUID]>|
 V <http://rdfh.ch/groups/[shortcode]/[UUID]>|
 M <http://rdfh.ch/groups/[shortcode]/[UUID]>|
 D <http://rdfh.ch/groups/[shortcode]/[UUID]>|
 CR <http://rdfh.ch/groups/[shortcode]/[UUID]>"^^xsd:string .

Querying Permission Instances

The properties forProject and either of forGroup,
forResourceClass, and forProperty form together a compound
key, allowing finding existing permission instances, that address the
same set of Project / Group / ResourceClass / Property combination, thus
making it possible to extend or change the attached permissions.

Administrative Permission Instances: For each group inside the
project, there can be zero or one instance holding
administrative permission information. Querying is straitforward by
using the knora-admin:forProject and knora-admin:forGroup properties
as the compound key.

Default Object Access Permission Instances: For each group, resource
class, or property inside the project, there can be zero or one
instances holding default object access permission informations.
Querying is straitforward by using the knora-admin:forProject and
either knora-admin:forGroup, knora-admin:forResourceClass, or
knora-admin:forProperty properties as part of the compound key.

Example Data stored in the permissions graph

Administrative permissions on a ‘ProjectAdmin’ group:

<http://rdfh.ch/permissions/[UUID]> rdf:type knora-admin:AdministrativePermission ;
 knora-admin:forProject <http://rdfh.ch/projects/00FF> ;
 knora-admin:forGroup knora-admin:ProjectAdmin ;
 knora-base:hasPermissions "ProjectResourceCreateAllPermission|
 ProjectAdminAllPermission"^^xsd:string .

Administrative permissions on a ‘ProjectMember’ group:

<http://rdfh.ch/permissions/[UUID]> rdf:type knora-admin:AdministrativePermission ;
 knora-admin:forProject <http://rdfh.ch/projects/00FF> ;
 knora-admin:forGroup knora-admin:ProjectMember ;
 knora-base:hasPermissions "ProjectResourceCreateAllPermission"^^xsd:string .

Administrative permission restricting project admin permission on a group:

<http://rdfh.ch/permissions/[UUID]> rdf:type knora-admin:Permission ;
 knora-admin:forProject <http://rdfh.ch/projects/[shortcode]> ;
 knora-admin:forGroup <http://rdfh.ch/groups/[shortcode]/[UUID]> ;
 knora-base:hasPermissions "ProjectGroupAdminRestrictedPermission <http://rdfh.ch/groups/[shortcode]/[UUID]>"^^xsd:string .

Administrative permission restricting resource creation for a group:

<http://rdfh.ch/permissions/[UUID]> rdf:type knora-admin:AdministrativePermission ;
 knora-admin:forProject <http://rdfh.ch/projects/[shortcode]> ;
 knora-admin:forGroup <http://rdfh.ch/groups/[shortcode]/[UUID]> ;
 knora-base:hasPermissions "ProjectResourceCreateRestrictedPermission <http://www.knora.org/ontology/00FF/images#Person>"^^xsd:string .

Default object access permission on a ‘ProjectMember’ group:

<http://rdfh.ch/permissions/[UUID]> rdf:type knora-admin:DefaultObjectAccessPermission ;
 knora-admin:forProject <http://rdfh.ch/projects/00FF> ;
 knora-admin:forGroup knora-admin:ProjectMember ;
 knora-base:hasPermissions "CR knora-admin:Creator|
 M <http://rdfh.ch/groups/[shortcode]/[UUID]>|
 V knora-admin:KnownUser"^^xsd:string .

Default object access permission on a resource class:

<http://rdfh.ch/permissions/[UUID]> rdf:type knora-admin:DefaultObjectAccessPermission ;
 knora-admin:forProject <http://rdfh.ch/projects/[shortcode]> ;
 knora-admin:forResourceClass <http://www.knora.org/ontology/00FF/images#person> ;
 knora-base:hasPermissions "CR knora-admin:Creator,knora-admin:ProjectMember|
 V knora-admin:KnownUser,knora-admin:UnknownUser"^^xsd:string .

Default object access permission on a resource property:

<http://rdfh.ch/permissions/[UUID]> rdf:type knora-admin:DefaultObjectAccessPermission ;
 knora-admin:forProject <http://rdfh.ch/projects/[shortcode]> ;
 knora-admin:forProperty <http://www.knora.org/ontology/00FF/images#lastname> ;
 knora-base:hasPermissions "D knora-admin:ProjectMember,knora-admin:Creator|
 V knora-admin:KnownUser,knora-admin:UnknownUser"^^ .

Default object access permission on a resource class and property:

<http://rdfh.ch/permissions/[UUID]> rdf:type knora-admin:DefaultObjectAccessPermission ;
 knora-admin:forProject <http://rdfh.ch/projects/[shortcode]> ;
 knora-admin:forResourceClass <http://www.knora.org/ontology/00FF/images#person> ;
 knora-admin:forProperty <http://www.knora.org/ontology/00FF/images#lastname> ;
 knora-base:hasPermissions "CR knora-admin:Creator,knora-admin:ProjectMember|
 V knora-admin:KnownUser,knora-admin:UnknownUser"^^xsd:string .

Default object access permission on a knora-admin property:

<http://rdfh.ch/permissions/[UUID]> rdf:type knora-admin:DefaultObjectAccessPermission ;
 knora-admin:forProject knora-admin:SystemProject ;
 knora-admin:forProperty <http://www.knora.org/ontology/knora-admin#hasStillImageFileValue> ;
 knora-base:hasPermissions "RV knora-admin:UnknownUser|
 V knora-admin:KnownUser|
 M knora-admin:ProjectMember,knora-admin:Creator"^^xsd:string .

A the time the user’s UserProfile is queried, all permissions for all
projects and groups the user is a member of are also queried. This
information is then stored as an easy accessible object inside the
UserProfile, being readily available wherever needed. As this is a
somewhat expensive operation, built-in caching mechanism at different
levels (e.g., UsersResponder, PermissionsResponder), will be applied.

Use Cases

UC01: Teaching a Class

	Description:I’m teaching a class and I have the names and email addresses of all
the students. I want to create a project, divide the students into
groups (which will only be relevant to this project, e.g. one group
for each section of the class), and put some students in each group.
I don’t want people to be able to join the project or the group by
themselves.

	Solution:The teacher creates different groups and adds users to those groups.
Additionally, the teacher can give TA’s GroupAdmin privileges, and
let the TA’s add students to the different groups.

UC02: Unibas Librarian

	Description:I’m a Unibas librarian managing several archiving projects. I need
to give everyone at the university permission to view all these
projects. I want to create a group called UnibasUser that everyone
with a Unibas email address will automatically belong to. Most of
the resources in those projects can then grant view permission to
UnibasUser. Or perhaps the group will be SwitchUser, for anyone
at a Swiss university. Or something even broader.

	Solution:These can be solved by creating Smart Groups, where the user can
define what properties need to be set, so that an user is
automatically part of this group. This will be implemented at a
later time, as it is not trivial and should also include all special
groups (e.g., KnownUser, ProjectMember, ProjectAdmin, etc.) that are
currently hard-coded inside the system.

UC03: Crowdsourcing Project

	Description:I’m doing a crowdsourcing project, which involves several different
groups that work on different tasks. I’m hoping for thousands of
users, and I’d like anyone to be able to join the project and add
themselves to any group they want (as long as Knora verifies their
email address), without needing approval from me.

	Solution:This can be solved by allowing self-assignment to a group.

UC04: User “left” Knora

	Description:An user who was an active collaborator, decides to “quit”, and wants
to delete his user.

	Solution:The user’s IRI is saved on each value change as part of the
versioning mechanism. Exchanging the user’s IRI in those places
would count as ‘rewriting history’. So deleting a user will not be
possible, instead the user will be set as not active.

Redesign / Questions June 2016

	Permissions constrained to groups

	Why this constraint?

	This is just the way we are doing it. Makes it a bit
simpler.

Resource owner permission to disruptive

	knora-base:attachedToUser gives owner status to the person who
created the resource.

	Proposed change: remove this altogether or make
institution/project owner of the resource.

	Should hiwis be “owners” of resources they create on behalf of
their professor?

	If the creator should have max permission, then give it
explicitly.

	Owner will be renamed to creator. We need this for
provenance. Does not give any permissions automatically. The
permissions depend on what is defined for the project and the
creator smart group.

Resource creation permission to course

	being part of a projects gives resource creation permission. What
if some project members are not allowed to create new resources
(or only certain types; Lumiere Lausanne requirement), but are
only allowed to change existing resources?

	These kind of permissions can be set on groups. A project can
have different groups, giving different kind of permissions.

Support Default Permissions

	Allow for a project to define permissions that a newly created
resource inside a project should receive (current Salsah behavior)

	Lumiere Lausanne requirement

	Will be allowed.

Groups

	Do groups belong to projects, i.e. are they seen as extensions to
projects?

	Does someone need to be part of a project to belong to a group of
that project?

	Every group needs to belong to a project. No GroupAdmins.
ProjectAdmins with additional GroupAdmin permissions.

root

	Should the ‘root’ / SystemAdmin user have ‘implicitly’ or
‘explicitly’ all permissions?

	Has implicitly all permissions.

	Does the has all permissions also extend to projects? Is the root
user going to be part of every project? If yes, then again
implicitly or explicitly?

	Since ‘root’ / SystemAdmin already has all permissions,
doesn’t really matter if part of a project or group

Ivan’s Use Case

	The system administrator creates the project and sets Ivan as the
project administrator. As the project administrator, I have all
permissions on all objects (Resources/Values; Project Groups)
belonging to the project (knora-base:attachedToProject). Nobody
outside of the project should be allowed to see anything that is
created as part of Ivan’s project. He wants to be able to create
two groups: Reviewer, Creator. The Reviewer group should
only give read-access to someone inside the group to resources
pointing to this group, but allow the creation of annotations.
Further, annotations should only be readable by users inside the
Reviewer group. The Creator group should give a user create
permission and modify permission on the objects the user has
created. Any resources created belong to the project. The
Creator group is meant for contributors helping out with the
project, e.g., Hiwis.

	Covered

Lausanne Projects

	A project wants to restrict the permissions of newly created
resources to a fixed set

	Covered. Will be able do define ‘default permissions’ and
restrict the creation of new resources to these permissions

	This means for the current implementation, that any permissions
supplied during the resource creation request need to be checked
and if needed overriden.

	Covered. Also in the new design, the backend will need to
always check the suplied permissions for newly created resources
as we cannot ve sure that the GUI will behave correctly (e.g.,
many different “Salsah” implementations)

	Restrict creation/access of certain classes of resources to
certain groups, e.g., group A is able to create/access resources
of class A but not of class B.

	Covered. Will be able to give a certain group only create
permission for specific classes

Results

	Owner renamed to Creator

	Some permissions are attached to groups (e.g., Add Resource
(Class), Modify Ontology, etc.), and some are attached to
resources (e.g., this group has read/modify permission, etc.)

	Ontologien Benutzung einschränken (nur auf bestimmte Gruppen, oder
frei zur Verfügung)

	System Admin Rechte implizit

	Gruppen immer an Projekt gebunden

	Keine Gruppen-Admins. Soll über Rollen vom Projekt-Admin geregelt
werden können.

Admin API Design

@@toc { depth=1 }

@@@ index

	Administration

@@@

How to Add an API v1 Route

@@toc

Write SPARQL templates

Add any SPARQL templates you need to src/main/twirl/queries/sparql/v1,
using the Twirl [https://github.com/playframework/twirl] template
engine.

Write Responder Request and Response Messages

Add a file to the org.knora.webapi.messages.v2.responder
package, containing case classes for your responder’s request and
response messages. Add a trait that the responder’s request messages
extend. Each request message type should contain a UserADM.

Response message classes that represent a complete API response must
extend KnoraResponseV1, and must therefore have a toJsValue method
that converts the response message to a JSON AST using
spray-json [https://github.com/spray/spray-json].

Write a Responder

Write a class that extends org.knora.webapi.responders.Responder,
and add it to the org.knora.webapi.responders.v1 package.

Give your responder a receive(msg: YourCustomType) method that handles each of your
request message types by generating a Future containing a response message.

See @ref:Triplestore Access for details of how
to access the triplestore in your responder.

Add the path of your responder to the org.knora.webapi.responders package object,
and add code to ResponderManager to instantiate an object for your responder class.
Then add a case to the receive method in ResponderManager, to match
messages that extend your request message trait, and pass them to the responder’s
receive method. The responder’s resulting Future must be passed to the ActorUtil.future2Message.
See @ref:Futures with Akka and
@ref:Error Handling for details.

Write a Route

Add a class to the org.knora.webapi.routing.v1 package for your
route, using the Akka HTTP Routing DSL [https://doc.akka.io/docs/akka-http/current/routing-dsl/index.html].
See the routes in that package for examples. Typically, each route
route will construct a responder request message and pass it to
RouteUtilV1.runRdfRouteWithFuture to handle the request.

Finally, add your knoraApiPath function to the apiRoutes member
variable in KnoraService. Any exception thrown inside the route will
be handled by the KnoraExceptionHandler, so that the correct client
response (including the HTTP status code) will be returned.

Knora API v1 Design

@@toc { depth=1 }

@@@ index

	JSON in API v1

	How to Add an API v1 Route

@@@

JSON in API v1

Knora API v1 parses and generates JSON using the
spray-json [https://github.com/spray/spray-json] library.

The triplestore returns results in JSON, and these are parsed into
SparqlSelectResponse objects in the store package (by SparqlUtils,
which can be used by any actor in that package). A
SparqlSelectResponse has a structure that’s very close to the JSON
returned by a triplestore via the SPARQL 1.1
Protocol [http://www.w3.org/TR/sparql11-protocol/]: it contains a header
(listing the variables that were used in the query) and a body
(containing rows of query results). Each row of query results is
represented by a VariableResultsRow, which contains a Map[String, String] of variable names to values.

The Jsonable trait marks classes that can convert themselves into
spray-json AST objects when you call their toJsValue method; it
returns a JsValue object, which can then be converted to text by
calling its prettyPrint or compactPrint methods. Case classes
representing complete API responses extend the KnoraResponseV1 trait,
which extends Jsonable. Case classes representing Knora values extend
the ApiValueV1 trait, which also extends Jsonable. To make the
responders reusable, the JSON for API responses is generated only at the
last moment, by the RouteUtilV1.runJsonRoute() function.

Archival Resource Key (ARK) Identifiers

@@toc

Requirements

Knora must produce an ARK URL for each resource and each value. The ARK identifiers used
by Knora must respect
the draft ARK specification [https://tools.ietf.org/html/draft-kunze-ark-22].
The format of Knora’s ARK URLs must be able to change over
time, while ensuring that previously generated ARK URLs still work.

Design

ARK URL Format

The format of a Knora ARK URL is as follows:

http://HOST/ark:/NAAN/VERSION/PROJECT/RESOURCE_UUID[/VALUE_UUID][.TIMESTAMP]

	HOST: the hostname of the ARK resolver.

	NAAN: the Name Assigning Authority Number (NAAN) that the ARK resolver uses.

	VERSION: the version of the Knora ARK URL format being used (always 1 for now).

	PROJECT: the @ref:short code of the
project that the resource belongs to.

	RESOURCE_UUID: the resource’s unique ID, which is normally a
@extrefbase64url-encoded UUID, as described in
@ref:IRIs for Data.

	VALUE_UUID: optionally, the knora-base:valueHasUUID of one of the
resource’s values, normally a
@extrefbase64url-encoded UUID, as described in
@ref:IRIs for Data.

	TIMESTAMP: an optional timestamp indicating that the ARK URL represents
the state of the resource at a specific time in the past. The format
of the timestamp is an ISO 8601 [https://www.iso.org/iso-8601-date-and-time-format.html]
date in Coordinated universal time (UTC), including date, time, and an optional
nano-of-second field (of at most 9 digits), without the characters -, :, and . (because
- and . are reserved characters in ARK, and : would have to be URL-encoded).
Example: 20180528T155203897Z.

Following the ARK ID spec, /
represents object hierarchy [https://tools.ietf.org/html/draft-kunze-ark-22#section-2.5.1]
and . represents an object variant [https://tools.ietf.org/html/draft-kunze-ark-22#section-2.5.2].
A value is thus contained in a resource, which is contained in its project,
which is contained in a repository (represented by the URL version number).
A timestamp is a type of variant.

Since sub-objects are optional, there is also implicitly an ARK URL
for each project, as well as for the repository as a whole.

The RESOURCE_UUID and VALUE_UUID are processed as follows:

	A check digit is calculated, using the algorithm in
the Scala class org.knora.webapi.util.Base64UrlCheckDigit, and appended
to the UUID.

	Any - characters in the resulting string are replaced with =, because
base64url encoding uses -, which is a reserved character in ARK URLs.

For example, given a project with ID 0001, and using the DaSCH’s ARK resolver
hostname and NAAN, the ARK URL for the project itself is:

http://ark.dasch.swiss/ark:/72163/1/0001

Given the Knora resource IRI http://rdfh.ch/0001/0C-0L1kORryKzJAJxxRyRQ,
the corresponding ARK URL without a timestamp is:

http://ark.dasch.swiss/ark:/72163/1/0001/0C=0L1kORryKzJAJxxRyRQY

The same ARK URL with an optional timestamp is:

http://ark.dasch.swiss/ark:/72163/1/0001/0C=0L1kORryKzJAJxxRyRQY.20180528T155203897Z

Given a value with knora-api:valueHasUUID "4OOf3qJUTnCDXlPNnygSzQ" in the resource
http://rdfh.ch/0001/0C-0L1kORryKzJAJxxRyRQ, and using the DaSCH’s ARK resolver
hostname and NAAN, the corresponding ARK URL without a timestamp is:

http://ark.dasch.swiss/ark:/72163/1/0001/0C=0L1kORryKzJAJxxRyRQY/4OOf3qJUTnCDXlPNnygSzQX

The same ARK URL with an optional timestamp is:

http://ark.dasch.swiss/ark:/72163/1/0001/0C=0L1kORryKzJAJxxRyRQY/4OOf3qJUTnCDXlPNnygSzQX.20180604T085622513Z

Serving ARK URLs

SmartIri converts Knora resource IRIs to ARK URLs. This conversion is invoked in ReadResourceV2.toJsonLD,
when returning a resource’s metadata in JSON-LD format.

Resolving Knora ARK URLs

A Knora ARK URL is intended to be resolved by the Knora ARK resolver [https://github.com/dhlab-basel/ark-resolver].

Content Wrappers

@@toc

Whenever possible, the same data structures are used to represent the same
types of data, regardless of the API operation (reading, creating, or
modifying). However, often more data is available in output than in input. For
example, when a value is read from the triplestore, its IRI is
available, but when it is being created, it does not yet have an IRI.

The implementation of API v2 therefore uses content wrappers. For each type,
there is a case class that represents the lowest common denominator of the
type, the data that will be present regardless of the API operation. For
example, the trait ValueContentV2 represents a Knora value, regardless
of whether it is received as input or returned as output. Case classes
such as DateValueContentV2 and TextValueContentV2 implement this trait.

An instance of this lowest-common-denominator class, or “content class”, can then
be wrapped in an instance of an operation-specific class that carries additional
data. For example, when a Knora value is returned from the triplestore, a
ValueContentV2 is wrapped in a ReadValueV2, which additionally contains the
value’s IRI. When a value is created, it is wrapped in a CreateValueV2, which
has the resource IRI and the property IRI, but not the value IRI.

A read wrapper can be wrapped in another read wrapper; for
example, a ReadResourceV2 contains ReadValueV2 objects.

In general, Knora API v2 responders deal only with the internal schema.
(The exception is OntologyResponderV2, which can return ontology information
that exists only in an external schema.) Therefore, a content class needs
to be able to convert itself from the internal schema to an external schema
(when it is being used for output) and vice versa (when it is being used for
input). Each content class class should therefore extend KnoraContentV2, and
thus have a toOntologySchema method or converting itself between internal and
external schemas, in either direction:

@@snip KnoraResponseV2.scala { #KnoraContentV2 }

Since read wrappers are used only for output, they need to be able convert
themselves only from the internal schema to an external schema. Each read wrapper class
should extend KnoraReadV2, and thus have a method for doing this:

@@snip KnoraResponseV2.scala { #KnoraReadV2 }

Gravsearch Design

@@toc

Gravsearch Package

The classes that process Gravsearch queries and results can be found in org.knora.webapi.responders.v2.search.gravsearch.

Type Inspection

The code that converts Gravserch queries into SPARQL queries, and processes the query results, needs to know the
types of the entities that are used in the input query. As explained in
@ref:Type Inference, these types can be inferred,
or they can be specified in the query using type annotations.

Type inspection is implemented in the package org.knora.webapi.responders.v2.search.gravsearch.types.
The entry point to this package is GravsearchTypeInspectionRunner, which is instantiated by SearchResponderV2.
The result of type inspection is a GravsearchTypeInspectionResult, in which each typeable entity in the input query is
associated with a GravsearchEntityTypeInfo, which can be either:

	A PropertyTypeInfo, which specifies the type of object that a property is expected to have.

	A NonPropertyTypeInfo, which specifies the type of a variable, or the type of an IRI representing a resource or value.

Identifying Typeable Entities

After parsing a Gravsearch query, SearchResponderV2 calls GravsearchTypeInspectionRunner.inspectTypes, passing
the WHERE clause of the input query. This method first identifies the entities whose types need to be determined. Each
of these entities is represented as a TypeableEntity. To do this, GravsearchTypeInspectionRunner uses QueryTraverser
to traverse the WHERE clause, collecting typeable entities in a visitor called TypeableEntityCollectingWhereVisitor.
The entities that are considered to need type information are:

	All variables.

	All IRIs except for those that represent type annotations or types.

The Type Inspection Pipeline

GravsearchTypeInspectionRunner contains a pipeline of type inspectors, each of which extends GravsearchTypeInspector.
There are two type inspectors in the pipeline:

	AnnotationReadingGravsearchTypeInspector: reads
@ref:type annotations included in a Gravsearch query.

	InferringGravsearchTypeInspector: infers the types of entities from the context in which they are used, as well
as from ontology information that it requests from OntologyResponderV2.

Each type inspector takes as input, and returns as output, an IntermediateTypeInspectionResult, which
associates each TypeableEntity with zero or more types. Initially, each TypeableEntity has no types. Each type inspector
adds whatever types it finds for each entity. At the end of the pipeline, each entity should
have exactly one type. If not, that’s an error, with two possible causes:

	An entity’s type could not be determined. The client must add a type annotation to make the query work.

	An entity appears to have more than one type, because the query used the entity inconsistently.

If there are no errors, GravsearchTypeInspectionRunner converts the pipeline’s output to a
GravsearchTypeInspectionResult, in which each entity is associated with exactly one type.

AnnotationReadingGravsearchTypeInspector

This inspector uses QueryTraverser to traverse the WHERE clause, collecting type annotations in a visitor called
AnnotationCollectingWhereVisitor. It then converts each annotation to a GravsearchEntityTypeInfo.

InferringGravsearchTypeInspector

This inspector first uses QueryTraverser to traverse the WHERE clause, assembling an index of
usage information about typeable entities in a visitor called UsageIndexCollectingWhereVisitor. The UsageIndex contains,
for example, an index of all the entities that are used as subjects, predicates, or objects, along with the
statements in which they are used. It also contains sets of all the Knora class and property IRIs
that are used in the WHERE clause. InferringGravsearchTypeInspector then asks OntologyResponderV2 for information
about those classes and properties, as well as about the classes that are subject types or object types of those properties.

Next, the inspector runs inference rules (which extend InferenceRule) on each TypeableEntity. Each rule
takes as input a TypeableEntity, the usage index, the ontology information, and the IntermediateTypeInspectionResult,
and returns a new IntermediateTypeInspectionResult. For example, TypeOfObjectFromPropertyRule infers an entity’s type
if the entity is used as the object of a statement and the predicate’s knora-api:objectType is known.

The inference rules are run repeatedly, because the output of one rule may allow another rule to infer additional
information. There are two pipelines of rules: a pipeline for the first iteration of type inference, and a
pipeline for subsequent iterations. This is because some rules can return additional information if they are run
more than once on the same entity, while others cannot.

The number of iterations is limited to InferringGravsearchTypeInspector.MAX_ITERATIONS, but in practice
two iterations are sufficient for most realistic queries, and it is difficult to design a query that requires more than
six iterations.

Transformation of a Gravsearch Query

A Gravsearch query submitted by the client is parsed by GravsearchParser and preprocessed by GravsearchTypeInspector
to get type information about the elements used in the query (resources, values, properties etc.)
and do some basic sanity checks.

In SearchResponderV2, two queries are generated from a given Gravsearch query: a prequery and a main query.

Query Transformers

The Gravsearch query is passed to QueryTraverser along with a query transformer. Query transformers are classes
that implement traits supported by QueryTraverser:

	WhereTransformer: instructions how to convert statements in the Where clause of a SPARQL query (to generate the prequery’s Where clause).

	ConstructToSelectTransformer (extends WhereTransformer): instructions how to turn a Construct query into a Select query (converts a Gravsearch query into a prequery)

	SelectToSelectTransformer (extends WhereTransformer): instructions how to turn a triplestore independent Select query into a triplestore dependent Select query (implementation of inference).

	ConstructToConstructTransformer (extends WhereTransformer): instructions how to turn a triplestore independent Construct query into a triplestore dependent Construct query (implementation of inference).

The traits listed above define methods that are implemented in the transformer classes and called by QueryTraverser to perform SPARQL to SPARQL conversions.
When iterating over the statements of the input query, the transformer class’s transformation methods are called to perform the conversion.

Prequery

The purpose of the prequery is to get an ordered collection of results representing only the IRIs of one page of matching resources and values.
Sort criteria can be submitted by the user, but the result is always deterministic also without sort criteria.
This is necessary to support paging.
A prequery is a SPARQL SELECT query.

The classes involved in generating prequeries can be found in org.knora.webapi.responders.v2.search.gravsearch.prequery.

If the client submits a count query, the prequery returns the overall number of hits, but not the results themselves.

In a first step, the Gravsearch query’s WHERE clause is transformed and the prequery (SELECT and WHERE clause) is generated from this result.
The transformation of the Gravsearch query’s WHERE clause relies on the implementation of the abstract class AbstractPrequeryGenerator.

AbstractPrequeryGenerator contains members whose state is changed during the iteration over the statements of the input query.
They can then by used to create the converted query.

	mainResourceVariable: Option[QueryVariable]: SPARQL variable representing the main resource of the input query. Present in the prequery’s SELECT clause.

	dependentResourceVariables: mutable.Set[QueryVariable]: a set of SPARQL variables representing dependent resources in the input query. Used in an aggregation function in the prequery’s SELECT clause (see below).

	dependentResourceVariablesGroupConcat: Set[QueryVariable]: a set of SPARQL variables representing an aggregation of dependent resources. Present in the prequery’s SELECT clause.

	valueObjectVariables: mutable.Set[QueryVariable]: a set of SPARQL variables representing value objects. Used in an aggregation function in the prequery’s SELECT clause (see below).

	valueObjectVarsGroupConcat: Set[QueryVariable]: a set of SPARQL variables representing an aggregation of value objects. Present in the prequery’s SELECT clause.

The variables mentioned above are present in the prequery’s result rows because they are part of the prequery’s SELECT clause.

The following example illustrates the handling of variables.
The following Gravsearch query looks for pages with a sequence number of 10 that are part of a book:

PREFIX incunabula: <http://0.0.0.0:3333/ontology/0803/incunabula/simple/v2#>
PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v2#>

 CONSTRUCT {
 ?page knora-api:isMainResource true .

 ?page knora-api:isPartOf ?book .

 ?page incunabula:seqnum ?seqnum .
 } WHERE {

 ?page a incunabula:page .

 ?page knora-api:isPartOf ?book .

 ?book a incunabula:book .

 ?page incunabula:seqnum ?seqnum .

 FILTER(?seqnum = 10)

 }

The prequery’s SELECT clause is built using the member variables defined in AbstractPrequeryGenerator.
State of member variables after transformation of the input query into the prequery:

	mainResourceVariable: QueryVariable(page)

	dependentResourceVariables: Set(QueryVariable(book))

	dependentResourceVariablesGroupConcat: Set(QueryVariable(book__Concat))

	valueObjectVariables: Set(QueryVariable(book__LinkValue), QueryVariable(seqnum)): ?book represents the dependent resource and ?book__LinkValue the link value connecting ?page and ?book.

	valueObjectVariablesGroupConcat: Set(QueryVariable(seqnum__Concat), QueryVariable(book__LinkValue__Concat))

The resulting SELECT clause of the prequery looks as follows:

SELECT DISTINCT
 ?page
 (GROUP_CONCAT(DISTINCT(?book); SEPARATOR='') AS ?book__Concat)
 (GROUP_CONCAT(DISTINCT(?seqnum); SEPARATOR='') AS ?seqnum__Concat)
 (GROUP_CONCAT(DISTINCT(?book__LinkValue); SEPARATOR='') AS ?book__LinkValue__Concat)
 WHERE {...}
 GROUP BY ?page
 ORDER BY ASC(?page)
 LIMIT 25

?page represents the main resource. When accessing the prequery’s result rows, ?page contains the Iri of the main resource.
The prequery’s results are grouped by the main resource so that there is exactly one result row per matching main resource.
?page is also used as a sort criterion although none has been defined in the input query.
This is necessary to make paging work: results always have to be returned in the same order (the prequery is always deterministic).
Like this, results can be fetched page by page using LIMIT and OFFSET.

Grouping by main resource requires other results to be aggregated using the function GROUP_CONCAT.
?book is used as an argument of the aggregation function.
The aggregation’s result is accessible in the prequery’s result rows as ?book__Concat.
The variable ?book is bound to an Iri.
Since more than one Iri could be bound to a variable representing a dependent resource, the results have to be aggregated.
GROUP_CONCAT takes two arguments: a collection of strings (Iris in our use case) and a separator.
When accessing ?book__Concat in the prequery’s results containing the Iris of dependent resources, the string has to be split with the separator used in the aggregation function.
The result is a collection of Iris representing dependent resources.
The same logic applies to value objects.

Main Query

The purpose of the main query is to get all requested information about the main resource, dependent resources, and value objects.
The Iris of those resources and value objects were returned by the prequery.
Since the prequery only returns resources and value objects matching the input query’s criteria,
the main query can specifically ask for more detailed information on these resources and values without having to reconsider these criteria.

Generating the Main Query

The classes involved in generating prequeries can be found in org.knora.webapi.responders.v2.search.gravsearch.mainquery.

The main query is a SPARQL CONSTRUCT query. Its generation is handled by the method GravsearchMainQueryGenerator.createMainQuery.
It takes three arguments: mainResourceIris: Set[IriRef], dependentResourceIris: Set[IriRef], valueObjectIris: Set[IRI].
From the given Iris, statements are generated that ask for complete information on exactly these resources and values.
For any given resource Iri, only the values present in valueObjectIris are to be queried.
This is achieved by using SPARQL’s VALUES expression for the main resource and dependent resources as well as for values.

Processing the Main Query’s results

When processing the main query’s results, permissions are checked and resources and values that the user did not explicitly ask for in the input query are filtered out. This is implemented in MainQueryResultProcessor.

The method getMainQueryResultsWithFullGraphPattern takes the main query’s results as an input and makes sure that the client has sufficient permissions on the results.
A main resource and its dependent resources and values are only returned if the user has view permissions on all the resources and value objects present in the main query.
Otherwise the method suppresses the main resource.
To do the permission checking, the results of the main query are passed to ConstructResponseUtilV2 which transforms a SparqlConstructResponse (a set of RDF triples)
into a structure organized by main resource Iris. In this structure, dependent resources and values are nested can be accessed via their main resource.
SparqlConstructResponse suppresses all resources and values the user has insufficient permissions on.
For each main resource, a check is performed for the presence of all resources and values after permission checking.

The method getRequestedValuesFromResultsWithFullGraphPattern filters out those resources and values that the user does not want to be returned by the query.
All the resources and values not present in the input query’s CONSTRUCT clause are filtered out. This only happens after permission checking.

The main resources that have been filtered out due to insufficient permissions are represented by the placeholder ForbiddenResource.
This placeholder stands for a main resource that cannot be returned, nevertheless it informs the client that such a resource exists.
This is necessary for a consistent behaviour when doing paging.

How to Add an API v2 Route

@@toc

Write SPARQL templates

Add any SPARQL templates you need to src/main/twirl/queries/sparql/v2,
using the Twirl [https://github.com/playframework/twirl] template
engine.

Write Responder Request and Response Messages

Add a file to the org.knora.webapi.messages.v2.responder
package, containing case classes for your responder’s request and
response messages. Add a trait that the responder’s request messages
extend. Each request message type should contain a UserADM.

Request and response messages should be designed following the patterns described
in @ref:JSON-LD Parsing and Formatting. Each responder’s
request messages should extend a responder-specific trait, so that
ResponderManager will know which responder to route those messages to.

Write a Responder

Write an Akka actor class that extends org.knora.webapi.responders.Responder,
and add it to the org.knora.webapi.responders.v2 package.

Give your responder a receive(msg: YourCustomType) method that handles each of your
request message types by generating a Future containing a response message.

See @ref:Triplestore Access for details of how
to access the triplestore in your responder.

Add the path of your responder to the org.knora.webapi.responders package object,
and add code to ResponderManager to instantiate the new responder. Then add a case to
the receive method in ResponderManager, to match messages that extend your request
message trait, and pass them them to that responder’s receive method.
The responder’s resulting Future must be passed to the ActorUtil.future2Message.
See @ref:Futures with Akka and
@ref:Error Handling for details.

Write a Route

Add a class to the org.knora.webapi.routing.v2 package for your
route, using the Akka HTTP Routing DSL [https://doc.akka.io/docs/akka-http/current/routing-dsl/index.html].
See the routes in that package for examples. Typically, each route
route will construct a responder request message and pass it to
RouteUtilV2.runRdfRouteWithFuture to handle the request.

Finally, add your knoraApiPath function to the apiRoutes member
variable in KnoraService. Any exception thrown inside the route will
be handled by the KnoraExceptionHandler, so that the correct client
response (including the HTTP status code) will be returned.

Knora API v2 Design

@@toc { depth=1 }

@@@ index

	API v2 Design Overview

	Ontology Schemas

	Smart IRIs

	Content Wrappers

	How to Add an API v2 Route

	JSON-LD Parsing and Formatting

	Ontology Management

	Knora and Sipi

	Gravsearch Design

	Standoff Markup

	Archival Resource Key (ARK) Identifiers

	SPARQL Query Design

@@@

JSON-LD Parsing and Formatting

@@toc

JsonLDUtil

Knora provides a utility object called JsonLDUtil, which wraps the
JSON-LD Java API [https://github.com/jsonld-java/jsonld-java], and parses JSON-LD text to a
Knora data structure called JsonLDDocument. These classes provide commonly needed
functionality for extracting and validating data from JSON-LD documents, as well
as for constructing new documents.

Parsing JSON-LD

A route that expects a JSON-LD request must first parse the JSON-LD using
JsonLDUtil . For example, this is how ValuesRouteV2 parses a JSON-LD request to create a value:

@@snip ValuesRouteV2.scala { #post-value-parse-jsonld }

The result is a JsonLDDocument in which all prefixes have been expanded
to full IRIs, with an empty JSON-LD context.

The next step is to convert the JsonLDDocument to a request message that can be
sent to the Knora responder that will handle the request.

@@snip ValuesRouteV2.scala { #post-value-create-message }

This is done in a Future, because the processing of JSON-LD input
could in itself involve sending messages to responders.

Each request message case class (in this case CreateValueRequestV2) has a companion object
that implements the KnoraJsonLDRequestReaderV2 trait:

@@snip KnoraRequestV2.scala { #KnoraJsonLDRequestReaderV2 }

This means that the companion object has a method fromJsonLD that takes a
JsonLDDocument and returns an instance of the case class. The fromJsonLD method
can use the functionality of the JsonLDDocument data structure for extracting
and validating the content of the request. For example, JsonLDObject.requireStringWithValidation
gets a required member of a JSON-LD object, and validates it using a function
that is passed as an argument. Here is an example of getting and validating
a SmartIri:

@@snip ValueMessagesV2.scala { #validate-json-ld-iri }

The validation function (in this case stringFormatter.toSmartIriWithErr) has to take
two arguments: a string to be validated, and a function that that throws an exception
if the string is invalid. The return value of requireStringWithValidation is the
return value of the validation function, which in this case is a SmartIri. If
the string is invalid, requireStringWithValidation throws BadRequestException.

It is also possible to get and validate an optional JSON-LD object member:

@@snip ValueMessagesV2.scala { #validate-optional-json-ld-string }

Here JsonLDObject.maybeStringWithValidation returns an Option that contains
the return value of the validation function (DateEraV2.parse) if it was given,
otherwise None.

Returning a JSON-LD Response

Each API response is represented by a message class that extends
KnoraResponseV2, which has a method toJsonLDDocument that specifies
the target ontology schema:

@@snip KnoraResponseV2.scala { #KnoraResponseV2 }

The implementation of this method constructs a JsonLDDocument,
in which all object keys are full IRIs (no prefixes are used), but in which
the JSON-LD context also specifies the prefixes that will be used when the
document is returned to the client. The function JsonLDUtil.makeContext
is a convenient way to construct the JSON-LD context.

Since toJsonLDDocument has to return an object that uses the specified
ontology schema, the recommended design is to separate schema conversion as much
as possible from JSON-LD generation. As a first step, schema conversion (or at the very
least, the conversion of Knora type IRIs to the target schema) can be done via an
implementation of KnoraReadV2:

@@snip KnoraResponseV2.scala { #KnoraReadV2 }

This means that the response message class has the method toOntologySchema, which returns
a copy of the same message, with Knora type IRIs (and perhaps other content) adjusted
for the target schema. (See @ref:Smart IRIs on how to convert Knora
type IRIs to the target schema.)

The response message class could then have a private method called generateJsonLD, which
generates a JsonLDDocument that has the correct structure for the target schema, like
this:

@@snip ResourceMessagesV2.scala { #generateJsonLD }

This way, the implementation of toJsonLDDocument can call toOntologySchema,
then construct a JsonLDDocument from the resulting object. For example:

@@snip ResourceMessagesV2.scala { #toJsonLDDocument }

Selecting the Response Schema

Most routes complete by calling RouteUtilV2.runRdfRouteWithFuture, which calls
the response message’s toJsonLDDocument method. The runRdfRouteWithFuture function
has a parameter that enables the route to select the schema that should be used in
the response. It is up to each route to determine what the appropriate response schema
should be. Some routes support only one response schema. Others allow the client
to choose. To use the schema requested by the client, the route can call
RouteUtilV2.getOntologySchema:

@@snip ResourcesRouteV2.scala { #use-requested-schema }

If the route only supports one schema, it can specify the schema directly instead:

@@snip ValuesRouteV2.scala { #specify-response-schema }

Generating Other RDF Formats

RouteUtilV2.runRdfRouteWithFuture implements
@extrefHTTP content negotiation, and converts JSON-LD
responses into Turtle [https://www.w3.org/TR/turtle/]
or RDF/XML [https://www.w3.org/TR/rdf-syntax-grammar/] as appropriate.

Ontology Management

@@toc

The core of Knora’s ontology management logic is OntologyResponderV2.
It is responsible for:

	Loading ontologies from the triplestore when Knora starts.

	Maintaining an ontology cache to improve performance.

	Returning requested ontology entities from the cache. Requests for ontology
information never access the triplestore.

	Creating and updating ontologies in response to API requests.

	Ensuring that all user-created ontologies are consistent and conform to @ref:knora-base.

When Knora starts, the ontology responder receives a LoadOntologiesRequestV2
message. It then:

	Loads all ontologies found in the triplestore into suitable Scala data structures,
which include indexes of relations between entities (e.g. rdfs:subClassOf relations),
to facilitate validity checks.

	Checks user-created ontologies for consistency and conformance to knora-base,
according to the rules described in
@ref:Summary of Restrictions on User-Created Ontologies.

	Caches all the loaded ontologies using CacheUtil.

The ontology responder assumes that nothing except itself modifies ontologies
in the triplestore while Knora is running. Therefore, the ontology cache is updated
only when the ontology responder processes a request to update an ontology.

By design, the ontology responder can update only one ontology entity per request,
to simplify the necessary validity checks. This requires the client to
construct an ontology by submitting a sequence of requests in a certain order,
as explained in
@ref:Ontology Updates.

The ontology responder mainly works with ontologies in the internal schema.
However, it knows that some entities in built-in ontologies have hard-coded
definitions in external schemas, and it checks the relevant
transformation rules and returns those entities directly when they are requested
(see @ref:Generation of Ontologies in External Schemas).

Ontology Schemas

@@toc

OntologySchema Type

As explained in @ref:API Schema,
Knora can represent the same RDF data in different forms: an “internal schema”
for use in the triplestore, and different “external schemas” for use in Knora
API v2. Different schemas use different IRIs, as explained in
@ref:Knora IRIs. Internally,
Knora uses a @ref:SmartIri class to convert IRIs between
schemas.

The data type representing a schema itself is OntologySchema, which
uses the sealed trait [https://alvinalexander.com/scala/benefits-of-sealed-traits-in-scala-java-enums]
pattern:

@@snip OntologySchema.scala { #OntologySchema }

This class hierarchy allows method declarations to restrict the schemas
they accept. A method that can accept any schema can take a parameter of type
OntologySchema, while a method that accepts only external schemas can take
a parameter of type ApiV2Schema. For examples, see @ref:Content Wrappers.

Generation of Ontologies in External Schemas

Ontologies are stored only in the internal schema, and are converted on the fly
to external schemas. For each external schema, there is a Scala object in
org.knora.webapi.messages.v2.responder.ontologymessages that provides rules
for this conversion:

	KnoraApiV2SimpleTransformationRules for the API v2 simple schema

	KnoraApiV2WithValueObjectsTransformationRules for the API v2 complex schema

Since these are Scala objects rather than classes, they are initialised before
the Akka ActorSystem starts, and therefore need a special instance of
Knora’s StringFormatter class (see @ref:Smart IRIs).

Each of these rule objects implements this trait:

@@snip OntologyTransformationRules.scala { #OntologyTransformationRules }

These rules are applied to knora-base as well as to user-created ontologies.
For example, knora-base:Resource has different cardinalities depending on its
schema (knora-api:Resource has an additional cardinality on knora-api:hasIncomingLink),
and this is therefore also true of its user-created subclasses. The transformation
is implemented:

	In the implementations of the toOntologySchema method in classes defined in
OntologyMessagesV2.scala: ReadOntologyV2, ReadClassInfoV2, ClassInfoContentV2,
PropertyInfoContentV2, and OntologyMetadataV2.

	In OntologyResponderV2.getEntityInfoResponseV2, which handles requests for
specific ontology entities. If the requested entity is hard-coded in a transformation
rule, this method returns the hard-coded external entity, otherwise it returns the relevant
internal entity.

API v2 Design Overview

@@toc

General Principles

	Knora API v2 requests and responses are RDF documents. Any API v2
response can be returned as JSON-LD [https://json-ld.org/spec/latest/json-ld/],
Turtle [https://www.w3.org/TR/turtle/],
or RDF/XML [https://www.w3.org/TR/rdf-syntax-grammar/].

	Each class or property used in a request or response has a
definition in an ontology, which Knora can serve.

	Response formats are reused for different requests whenever
possible, to minimise the number of different response formats a
client has to handle. For example, any request for one or more
resources (such as a search result, or a request for one specific
resource) returns a response in the same format.

	Response size is limited by design. Large amounts of data must be
retrieved by requesting small pages of data, one after the other.

	Responses that provide data are distinct from responses that provide
definitions (i.e. ontology entities). Data responses indicate which
types are used, and the client can request information about these
types separately.

API Schemas

The types used in the triplestore are not exposed directly in the API.
Instead, they are mapped onto API ‘schemas’. Two schemas are currently
provided.

	A complex schema, which is suitable both for reading and for editing
data. The complex schema represents values primarily as complex
objects.

	A simple schema, which is suitable for reading data but not for
editing it. The simple schema facilitates interoperability between
Knora ontologies and non-Knora ontologies, since it represents
values primarily as literals.

Each schema has its own type IRIs, which are derived from the ones used
in the triplestore. For details of these different IRI formats, see
@ref:Knora IRIs.

Implementation

JSON-LD Parsing and Formatting

Each API response is represented by a class that extends
KnoraResponseV2, which has a method toJsonLDDocument that specifies
the target schema. It is currently up to each route to determine what
the appropriate response schema should be. Some routes will support only
one response schema. Others will allow the client to choose, and there
will be one or more standard ways for the client to specify the desired
response schema.

A route calls RouteUtilV2.runRdfRoute, passing a request message and
a response schema. When RouteUtilV2 gets the response message from the
responder, it calls toJsonLDDocument on it, specifying that schema.
The response message returns a JsonLDDocument, which is a simple data
structure that is then converted to Java objects and passed to the
JSON-LD Java library for formatting. In general, toJsonLDDocument is
implemented in two stages: first the object converts itself to the
target schema, and then the resulting object is converted to a
JsonLDDocument.

A route that receives JSON-LD requests should use
JsonLDUtil.parseJsonLD to convert each request to a JsonLDDocument.

Generation of Other RDF Formats

RouteUtilV2.runRdfRoute implements
@extrefHTTP content negotiation, and converts JSON-LD
responses into Turtle [https://www.w3.org/TR/turtle/]
or RDF/XML [https://www.w3.org/TR/rdf-syntax-grammar/] as appropriate.

Operation Wrappers

Whenever possible, the same data structures are used for input and
output. Often more data is available in output than in input. For
example, when a value is read from the triplestore, its IRI is
available, but when it is being created, it does not yet have an IRI. In
such cases, there is a class like ValueContentV2, which represents the
data that is used both for input and for output. When a value is read, a
ValueContentV2 is wrapped in a ReadValueV2, which additionally
contains the value’s IRI. When a value is created, it is wrapped in a
CreateValueV2, which has the resource IRI and the property IRI, but
not the value IRI.

A Read* wrapper can be wrapped in another Read* wrapper; for
example, a ReadResourceV2 contains ReadValueV2 objects.

Each *Content* class should extend KnoraContentV2 and thus have a
toOntologySchema method or converting itself between internal and
external schemas, in either direction.

Each Read* wrapper class should have a method for converting itself to
JSON-LD in a particular external schema. If the Read* wrapper is a
KnoraResponseV2, this method is toJsonLDDocument.

Smart IRIs

Usage

The SmartIri trait can be used to parse and validate IRIs, and in
particular for converting Knora type IRIs between internal and external
schemas. It validates each IRI it parses. To use it, import the
following:

import org.knora.webapi.util.{SmartIri, StringFormatter}
import org.knora.webapi.util.IriConversions._

Ensure that an implicit instance of StringFormatter is in scope:

implicit val stringFormatter: StringFormatter = StringFormatter.getGeneralInstance

Then, if iriStr is a string representing an IRI, you can can convert
it to a SmartIri like this:

val iri: SmartIri = iriStr.toSmartIri

If the IRI came from a request, use this method to throw a specific
exception if the IRI is invalid:

val iri: SmartIri = iriStr.toSmartIriWithErr(
 () => throw BadRequestException(s"Invalid IRI: $iriStr")
)

You can then use methods such as SmartIri.isKnoraApiV2EntityIri and
SmartIri.getProjectCode to obtain information about the IRI. To
convert it to another schema, call SmartIri.toOntologySchema.
Converting a non-Knora IRI returns the same IRI.

If the IRI represents a Knora internal value class such as
knora-base:TextValue, converting it to the ApiV2Simple schema will
return the corresponding simplified type, such as xsd:string. But this
conversion is not performed in the other direction (external to
internal), since this would require knowledge of the context in which
the IRI is being used.

The performance penalty for using a SmartIri instead of a string is
very small. Instances are automatically cached once they are
constructed. Parsing and caching a SmartIri instance takes about 10-20
µs, and retrieving a cached SmartIri takes about 1 µs.

There is no advantage to using SmartIri for data IRIs, since they are
not schema-specific (and are not cached). If a data IRI has been
received from a client request, it is better just to validate it using
StringFormatter.validateAndEscapeIri.

Implementation

The smart IRI implementation, SmartIriImpl, is nested in the
StringFormatter class, because it uses Knora’s
hostname, which isn’t available until the Akka ActorSystem has started.
However, this means that the type of a SmartIriImpl instance is
dependent on the instance of StringFormatter that constructed it.
Therefore, instances of SmartIriImpl created by different instances of
StringFormatter can’t be compared directly.

There are in fact two instances of StringFormatter:

	one returned by StringFormatter.getGeneralInstance which is
available after Akka has started and has the API server’s hostname
(and can therefore provide SmartIri instances capable of parsing
IRIs containing that hostname). This instance is used throughout the
Knora API server.

	one returned by StringFormatter.getInstanceForConstantOntologies,
which is available before Akka has started, and is used only by the
hard-coded constant knora-api ontologies.

This is the reason for the existence of the SmartIri trait, which is a
top-level definition and has its own equals and hashCode methods.
Instances of SmartIri can thus be compared (e.g. to use them as unique
keys in collections), regardless of which instance of StringFormatter
created them.

SPARQL Query Design

@@toc

Querying Past Value Versions

Value versions are a linked list, starting with the current version. Each value points to
the previous version via knora-base:previousValue. The resource points only to the current
version.

Past value versions are queried in getResourcePropertiesAndValues.scala.txt, which can
take a timestamp argument. Given the current value version, we must find the most recent
past version that existed at the target date.

First, we get the set of previous values that were created on or before the target
date:

?currentValue knora-base:previousValue* ?valueObject .
?valueObject knora-base:valueCreationDate ?valueObjectCreationDate .
FILTER(?valueObjectCreationDate <= "@versionDate"^^xsd:dateTime)

The resulting versions are now possible values of ?valueObject. Next, out of this set
of versions, we exclude all versions except for the most recent one. We do this by checking,
for each ?valueObject, whether there is another version, ?otherValueObject, that is more
recent and was also created before the target date. If such a version exists, we exclude
the one we are looking at.

FILTER NOT EXISTS {
 ?currentValue knora-base:previousValue* ?otherValueObject .
 ?otherValueObject knora-base:valueCreationDate ?otherValueObjectCreationDate .

 FILTER(
 (?otherValueObjectCreationDate <= "@versionDate"^^xsd:dateTime) &&
 (?otherValueObjectCreationDate > ?valueObjectCreationDate)
)
}

This excludes all past versions except the one we are interested in.

Knora and Sipi

@@toc

Configuration

The Knora-specific configuration and scripts for Sipi are in the
sipi subdirectory of the Knora source tree. See the README.md there for
instructions on how to start Sipi with Knora.

Lua Scripts

Knora API v2 uses custom Lua scripts to control Sipi. These scripts can be
found in sipi/scripts in the Knora source tree.

Each of these scripts expects a JSON Web Token [https://jwt.io/] in the
URL parameter token. In all cases, the token must be signed by Knora,
it must have an expiration date and not have expired, its issuer must be Knora,
and its audience must include Sipi. The other contents of the expected tokens
are described below.

upload.lua

The upload.lua script is available at Sipi’s upload route. It processes one
or more file uploads submitted to Sipi. It converts uploaded images to JPEG 2000
format, and stores them in Sipi’s tmp directory. The usage of this script is described in
@ref:Creating File Values.

Each time upload.lua processes a request, it also deletes old temporary files
from tmp and (recursively) from any subdirectories. The maximum allowed age of
temporary files can be set in Sipi’s configuration file, using the parameter
max_temp_file_age, which takes a value in seconds, and defaults to
86400 (1 day).

store.lua

The store.lua script is available at Sipi’s store route. It moves a file
from temporary to permanent storage. It expects an HTTP POST request containing
application/x-www-form-urlencoded data with the parameters prefix (the
project shortcode) and filename (the internal Sipi-generated filename of the file
to be moved).

The JWT sent to this script must contain the key knora-data, whose value
must be a JSON object containing:

	permission: must be StoreFile

	prefix: the project shortcode submitted in the form data

	filename: the filename submitted in the form data

delete_temp_file.lua

The delete_temp_file.lua script is available at Sipi’s delete_temp_file route.
It is used only if Knora rejects a file value update request. It expects an
HTTP DELETE request, with a filename as the last component of the URL.

The JWT sent to this script must contain the key knora-data, whose value
must be a JSON object containing:

	permission: must be DeleteTempFile

	filename: must be the same as the filename submitted in the URL

SipiConnector

In Knora, the org.knora.webapi.iiif.SipiConnector handles all communication
with Sipi. It blocks while processing each request, to ensure that the number of
concurrent requests to Sipi is not greater than
akka.actor.deployment./storeManager/iiifManager/sipiConnector.nr-of-instances.
If it encounters an error, it returns SipiException.

The Image File Upload Workflow

	The client uploads an image file to the upload route, which runs
upload.lua. The image is converted to JPEG 2000 and stored in Sipi’s tmp
directory. In the response, the client receives the JPEG 2000’s unique,
randomly generated filename.

	The client submits a JSON-LD request to a Knora route (/v2/values or /v2/resources)
to create or change a file value. The request includes Sipi’s internal filename.

	During parsing of this JSON-LD request, a StillImageFileValueContentV2
is constructed to represent the file value. During the construction of this
object, a GetImageMetadataRequestV2 is sent to SipiConnector, which
uses Sipi’s built-in knora.json route to get the rest of the file’s
metadata.

	A responder (ResourcesResponderV2 or ValuesResponderV2) validates
the request and updates the triplestore. (If it is ResourcesResponderV2,
it asks ValuesResponderV2 to generate SPARQL for the values.)

	The responder that did the update calls ValueUtilV2.doSipiPostUpdate.
If the triplestore update was successful, this method sends
MoveTemporaryFileToPermanentStorageRequestV2 to SipiConnector, which
makes a request to Sipi’s store route. Otherwise, the same method sends
DeleteTemporaryFileRequestV2 to SipiConnector, which makes a request
to Sipi’s delete_temp_file route.

If the request to Knora cannot be parsed, the temporary file is not deleted
immediately, but it will be deleted during the processing of a subsequent
request by Sipi’s upload route.

If Sipi’s store route fails, Knora returns the SipiException to the client.
In this case, manual intervention may be necessary to restore consistency
between Knora and Sipi.

If Sipi’s delete_temp_file route fails, the error is not returned to the client,
because there is already a Knora error that needs to be returned to the client.
In this case, the Sipi error is simply logged.

Smart IRIs

@@toc

Usage

The SmartIri trait can be used to parse and validate IRIs, and in
particular for converting @ref:Knora type IRIs
between internal and external schemas. It validates each IRI it parses. To use it,
import the following:

import org.knora.webapi.util.{SmartIri, StringFormatter}
import org.knora.webapi.util.IriConversions._

Ensure that an implicit instance of StringFormatter is in scope:

@@snip ResourceMessagesV2.scala { #getGeneralInstance }

Then, if you have a string representing an IRI, you can can convert
it to a SmartIri like this:

@@snip ValuesResponderV2Spec.scala { #toSmartIri }

If the IRI came from a request, use this method to throw a specific
exception if the IRI is invalid:

@@snip ResourceMessagesV2.scala { #toSmartIriWithErr }

You can then use methods such as SmartIri.isKnoraApiV2EntityIri and
SmartIri.getProjectCode to obtain information about the IRI. To
convert it to another schema, call SmartIri.toOntologySchema.
Converting a non-Knora IRI returns the same IRI.

If the IRI represents a Knora internal value class such as
knora-base:TextValue, converting it to the ApiV2Simple schema will
return the corresponding simplified type, such as xsd:string. But this
conversion is not performed in the other direction (external to
internal), since this would require knowledge of the context in which
the IRI is being used.

The performance penalty for using a SmartIri instead of a string is
very small. Instances are automatically cached once they are
constructed.

There is no advantage to using SmartIri for data IRIs, since they are
not schema-specific (and are not cached). If a data IRI has been
received from a client request, it is better just to validate it using
StringFormatter.validateAndEscapeIri, and represent it as an
org.knora.webapi.IRI (an alias for String).

Implementation

The smart IRI implementation, SmartIriImpl, is nested in the
StringFormatter class, because it uses Knora’s
hostname, which isn’t available until the Akka ActorSystem has started.
However, this means that the Scala type of a SmartIriImpl instance is
dependent on the instance of StringFormatter that constructed it.
Therefore, instances of SmartIriImpl created by different instances of
StringFormatter can’t be compared directly.

There are in fact two instances of StringFormatter:

	one returned by StringFormatter.getGeneralInstance, which is
available after Akka has started and has the API server’s hostname
(and can therefore provide SmartIri instances capable of parsing
IRIs containing that hostname). This instance is used throughout the
Knora API server.

	one returned by StringFormatter.getInstanceForConstantOntologies,
which is available before Akka has started, and is used only by the
hard-coded constant knora-api ontologies (see
@ref:Generation of Ontologies in External Schemas).

This is the reason for the existence of the SmartIri trait, which is a
top-level definition and has its own equals and hashCode methods.
Instances of SmartIri can thus be compared (e.g. to use them as unique
keys in collections), regardless of which instance of StringFormatter
created them.

Standoff Markup

@@toc

Requirements

In Knora, text with markup is stored using
standoff markup [http://uahost.uantwerpen.be/lse/index.php/lexicon/markup-standoff/], i.e. markup that
is stored separately from the content it applies to.

Knora’s standoff design is based on these requirements:

	Overlapping markup [https://en.wikipedia.org/wiki/Overlapping_markup] should be supported.

	Markup should be stored as RDF, so it can be searched and analysed using the same tools that are used
with other data managed by Knora.

	In particular, @ref:Gravsearch queries should be able
to specify search criteria that refer to the markup tags attached to a text, together with
any other search criteria relating to the resource that contains the text.

	It should be possible to import any XML document into Knora, store the markup as standoff, and
at any time export the document as an equivalent XML document.

RDF Design

See @ref:Text with Standoff Markup.

Querying Standoff

Since the number of standoff tags that can be attached to a text value is unlimited, standoff is queried
in pages of a limited size, to avoid requesting huge SPARQL query results from the triplestore.

When ResourcesResponderV2 or SearchResponderV2 need to return a text value with all its markup,
they first query the text value with at most one page of standoff. If the text value has more than one page of
standoff, ConstructResponseUtilV2.makeTextValueContentV2 then sends a GetRemainingStandoffFromTextValueRequestV2
message to StandoffResponderV2, which queries the rest of the standoff in the text value, one page at a time.
The resulting standoff is concatenated together and returned.

To optimise query performance:

	Each text value with standoff has the predicate knora-base:valueHasMaxStandoffStartIndex, so that when Knora
queries a page of standoff, it knows whether it has reached the last page.

	The last path component of the IRI of a standoff tag is the integer object of its
knora-base:standoffTagHasStartIndex predicate. When querying standoff, it is necessary to convert
the IRI objects of knora-base:standoffTagHasStartParent and knora-base:standoffTagHasEndParent to
integer indexes (the start indexes of those tags). Including each tag’s start index in its IRI makes it
unnecessary to query the parent tags to determine their start indexes.

Conversion Between Standoff and XML

XMLToStandoffUtil does the low-level conversion of documents between standoff and XML, using a simple
data structure to represent standoff. This data structure knows nothing about RDF, and each standoff tag
contains its XML element name and namespace and those of its attributes.

In Knora, it is possible to define @ref:mappings to
control how standoff/RDF is converted to XML and vice versa. Different mappings can be used to convert the same
standoff/RDF to different sorts of XML documents. StandoffTagUtilV2 converts between standoff/RDF and XML using
mappings, delegating the lower-level work to XMLToStandoffUtil.

Client API Code Generation Framework

@@toc

Requirements

	Simplify the development of clients that work with Knora APIs.

	Reduce the need for manual changes in client code when Knora APIs change.

	At minimum, generate client API code in

	TypeScript

	Python

	Generate:

	Endpoint definitions containing function definitions in the target language.

	Class definitions corresponding to the built-in classes that Knora uses in its APIs.

	Include client function definitions in Knora route definitions.

In the future, it would also be useful to generate project-specific client
APIs, with class definitions corresponding to project-specific classes.

Implementation

Client APIs are defined in Scala and extend the ClientApi trait. There
is currently an implementation for the admin API, called AdminClientApi.
A ClientApi contains one or more KnoraRoute implementations that extend
ClientEndpoint. Each endpoint defines functions to be generated for performing
API operations that use the route.

The route ClientApiRoute generates all available client APIs for a specified
target, returning source code in a Zip file. For instructions on using
this route, see
@ref:Generating Client API Code.

This route has a front end, GeneratorFrontEnd, which that gets API class
definitions from OntologyResponderV2 and transforms them into a data structure
that is suitable for code generation. The route supports different back ends for
different targets. A back end determines which files need to be generated,
generates each file using a Twirl template, and arranges the files in the
correct directory structure.

Currently one back end, TypeScriptBackEnd, is implemented; it generates code
for use with knora-api-js-lib [https://github.com/dasch-swiss/knora-api-js-lib].

Client Function DSL

Client function definitions are written in a Scala DSL. A function definition
looks like this:

@@snip UsersRouteADM.scala { #getUserGroupMembershipsFunction }

The description keyword specifies a documentation comment describing the function.
A function has params, each of which also has a description, as well as a paramType.
Built-in types are defined in ClientApi.scala and extend ClientObjectType.
Class types can be constructed using the classRef function, as shown above.

The doThis keyword introduces the body of a function, which can be either
an HTTP operation or a function call. After the doThis block, returns
specifies the return type of the function.

HTTP Operations

An HTTP operation is introduced by httpGet, httpPost, httpPut, or
httpDelete; it takes a path and (if it httpPost or httpPut) an optional
request body. The path consists of elements separated by slashes. Each element
is either str() representing a string literal, arg representing an argument
that was passed to the function, or argMember() representing a member of an
argument.

URL parameters can be added like this:

@@snip PermissionsRouteADM.scala { #getListsInProjectFunction }

Here is an example with a request body:

@@snip UsersRouteADM.scala { #createUserFunction }

In this case, the request body is the user argument that was passed to the function.

The request body can also be a constructed JSON object:

@@snip UsersRouteADM.scala { #updateUserPasswordFunction }

Function Calls

Instead of performing an HTTP operation directly, a function can call another
function, like this:

@@snip UsersRouteADM.scala { #getUserFunction }
@@snip UsersRouteADM.scala { #getUserByIriFunction }

If an argument of the calling function needs to be converted to another type
for the function call, use the as keyword as shown above.

Generated Classes

Many objects have a unique ID, which is present when the object is read or
updated, but not when it is created.

API classes can also have read-only properties. For example, in the admin API,
the User class has a projects property, whose objects are instances of
Project. Similarly, the Projects class has a members property, whose
objects are instances of User. However, when users and projects are created or
updated, these properties are not used.

In TypeScript, it is necessary to avoid circular imports. If the TypeScript
definition of User imports the definition of Project, the definition of
Project cannot import the definition of User.

The structure of the generated classes is intended to deal with these issues.
Taking User and Project as an example:

	The User class does not contain an ID or any read-only properties.

	A StoredUser class is generated as a subclass of User. It provides
the user’s ID, and can be submitted in update operations.

	A ReadUser class is generated as a subclass of StoredUser. It provides
the read-only properties.

In ReadUser, the projects property is a collection of StoredProject
objects. Since StoredProject does not have any read-only properties, it
does not have a property referring to users. This prevents circular imports.

This design works because in the Knora API, a circular reference always involves
a read-only property. For example, the projects property of User is
read-only, as is the members property of Project. In the case of a resource,
the property pointing from a resource to a link value is not read-only (you can
submit a resource with an embedded link value), but the property pointing from a
link value to an embedded resource is read-only.

The read-only properties and ID properties are specified in each ClientApi.

Collection Types

Array[T] and Map[K, V] collection types can be generated and used as the object types
of properties in ordinary classes. The collection type is specified in the IRI of the
property object type, using a Scala-like type annotation syntax, like this:

http://api.knora.org/ontology/knora-admin/v2#collection: Map[URI, Array[Permission]]

(The local part of the IRI can also be URL-encoded.) The keyword collection: indicates
that the rest of the IRI specifies a collection type, which must be an Array or Map type.
The following literal types can be used:

	String

	Boolean

	Integer

	Decimal

	URI

	DateTimeStamp

Class names (like Permission) in the example above refer to classes in the same IRI
namespace as the collection type. The keys of a Map must be String or URI.

ClientCollectionTypeParser parses these definitions into MapType and ArrayType
objects, which can then be used by a language-specific back end to generate type signatures
in the target language.

Testing

Library Test Stubs

The generated code depends on handwritten library code to work, but stubs can
be provided to test for compile errors in the generated code.

The directory webapi/_test_data/typescript-client-mock-src in the Knora source
tree contains test stubs for the TypeScript client library.

Test Requests and Responses

The generated code includes a directory test-data, containing sample requests
and responses, which can be used to test the generated code without Knora.

Authentication in Knora

@@toc

Scope

Authentication is the process of making sure that if someone is
accessing something then this someone is actually also the someone he
pretends to be. The process of making sure that someone is authorized,
i.e. has the permission to access something, is handled as described in
@ref:Authorisation).

Implementation

The authentication in Knora is based on Basic Auth HTTP basic
authentication [https://en.wikipedia.org/wiki/Basic_access_authentication],
URL parameters, JSON Web Token [https://jwt.io], and cookies. This means
that on every request (to any of the routes), credentials need to be
sent either via authorization header, URL parameters or cookie header.

All routes are always accessible and if there are no credentials
provided, a default user is assumed. If credentials are sent and they
are not correct (e.g., wrong username, password incorrect, token
expired), then the request will end in an error message.

There are some differences in V1 and V2 of the API regarding
authentication. They differ mainly in the format of the response and
that creation of session cookies are only supported in V1 and tokens
in V2. After login via either version, all routes (V1 and V2) are
accessible.

Skipping Authentication

There is the possibility to turn skipping authentication on and use a
hardcoded user (Test User). In application.conf set the
skip-authentication = true and Test User will be always assumed.

Consistency Checking

@@toc

Requirements

Knora is designed to prevent inconsistencies in RDF data,
as far as is practical, in a triplestore-independent way (see
@ref:Triplestore Updates). However, it is also
useful to enforce consistency constraints in the triplestore itself, for
two reasons:

	To prevent inconsistencies resulting from bugs in the Knora API
server.

	To prevent users from inserting inconsistent data directly into the
triplestore, bypassing Knora.

The design of the knora-base ontology supports two ways of specifying
constraints on data (see @ref:knora-base: Consistency Checking
for details):

	A property definition should specify the types that are allowed as
subjects and objects of the property, using
knora-base:subjectClassConstraint and (if it is an object
property) knora-base:objectClassConstraint. Every subproperty of
knora-base:hasValue or a knora-base:hasLinkTo (i.e. every
property of a resource that points to a knora-base:Value or to
another resource) is required have this constraint, because the
Knora API server relies on it to know what type of object to expect
for the property. Use of knora-base:subjectClassConstraint is
recommended but not required.

	A class definition should use OWL cardinalities (see OWL 2 Quick Reference Guide [https://www.w3.org/TR/owl2-quick-reference/])
to indicate the properties that instances of the class are allowed to
have, and to constrain the number of objects that each property can
have. Subclasses of knora-base:Resource are required to have a
cardinality for each subproperty of knora-base:hasValue or a
knora-base:hasLinkTo that resources of that class can have.

Specifically, consistency checking should prevent the following:

	An object property or datatype property has a subject of the wrong
class, or an object property has an object of the wrong class
(GraphDB’s consistency checke cannot check the types of literals).

	An object property has an object that does not exist (i.e. the
object is an IRI that is not used as the subject of any statements
in the repository). This can be treated as if the object is of the
wrong type (i.e. it can cause a violation of
knora-base:objectClassConstraint, because there is no compatible
rdf:type statement for the object).

	A class has owl:cardinality 1 or owl:minCardinality 1 on an
object property or datatype property, and an instance of the class
does not have that property.

	A class has owl:cardinality 1 or owl:maxCardinality 1 on an
object property or datatype property, and an instance of the class
has more than one object for that property.

	An instance of knora-base:Resource has an object property pointing
to a knora-base:Value or to another Resource, and its class has
no cardinality for that property.

	An instance of knora-base:Value has a subproperty of
knora-base:valueHas, and its class has no cardinality for that
property.

	A datatype property has an empty string as an object.

Cardinalities in base classes are inherited by derived classes. Derived
classes can override inherited cardinalities by making them more
restrictive, i.e. by specifying a subproperty of the one specified in
the original cardinality.

Instances of Resource and Value can be marked as deleted, using the
property isDeleted. This must be taken into account as follows:

	With owl:cardinality 1 or owl:maxCardinality 1, if the object of
the property can be marked as deleted, the property must not have
more than one object that has not been marked as deleted. In other
words, it’s OK if there is more than one object, as long only one of
them has knora-base:isDeleted false.

	With owl:cardinality 1 or owl:minCardinality 1, the property
must have an object, but it’s OK if the property’s only object is
marked as deleted. We allow this because the subject and object may
have different owners, and it may not be feasible for them to
coordinate their work. The owner of the object should always be able
to mark it as deleted. (It could be useful to notify the owner of
the subject when this happens, but that is beyond the scope of
consistency checking.)

Design

Ontotext GraphDB [https://ontotext.com/products/graphdb/] provides a
mechanism for checking the consistency of data in a repository each time
an update transaction is committed. Knora provides GraphDB-specific
consistency rules that take advantage of this feature to provide an
extra layer of consistency checks, in addition to the checks that are
implemented in Knora.

When a repository is created in GraphDB, a set of consistency rules can
be provided, and GraphDB’s consistency checker can be turned on to
ensure that each update transaction respects these rules, as described
in the section
Reasoning [http://graphdb.ontotext.com/documentation/standard/reasoning.html]
of the GraphDB documentation. Like custom inference rules, consistency
rules are defined in files with the .pie filename extension, in a
GraphDB-specific syntax.

We have added rules to the standard RDFS inference rules file
builtin_RdfsRules.pie, to create the file KnoraRules.pie. The .ttl
configuration file that is used to create the repository must contain
these settings:

owlim:ruleset "/path/to/KnoraRules.pie" ;
owlim:check-for-inconsistencies "true" ;

The path to KnoraRules.pie must be an absolute path. The scripts
provided with Knora to create test repositories set this path
automatically.

Consistency checking in GraphDB relies on reasoning. GraphDB’s reasoning
is
Forward-chaining [http://graphdb.ontotext.com/documentation/standard/introduction-to-semantic-web.html#reasoning-strategies],
which means that reasoning is applied to the contents of each update,
before the update transaction is committed, and the inferred statements
are added to the repository.

A GraphDB rules file can contain two types of rules: inference rules and
consistency rules. Before committing an update transaction, GraphDB
applies inference rules, then consistency rules. If any of the
consistency rules are violated, the transaction is rolled back.

An inference rule has this form:

Id: <rule_name>
 <premises> <optional_constraints>

 <consequences> <optional_constraints>

The premises are a pattern that tries to match statements found in the
data. Optional constraints, which are enclosed in square brackets, make
it possible to specify the premises more precisely, or to specify a
named graph (see examples below). Consequences are the statements that
will be inferred if the premises match. A line of hyphens separates
premises from consequences.

A GraphDB consistency rule has a similar form:

Consistency: <rule_name>
 <premises> <optional_constraints>

 <consequences> <optional_constraints>

The differences between inference rules and consistency rules are:

	A consistency rule begins with Consistency instead of Id.

	In a consistency rule, the consequences are optional. Instead of
representing statements to be inferred, they represent statements
that must exist if the premises are satisfied. In other words, if
the premises are satisfied and the consequences are not found, the
rule is violated.

	If a consistency rule doesn’t specify any consequences, and the
premises are satisfied, the rule is violated.

Rules use variable names for subjects, predicates, and objects, and they
can use actual property names.

Empty string as object

If subject i has a predicate p whose object is an empty string, the
constraint is violated:

Consistency: empty_string
 i p ""

Subject and object class constraints

If subject i has a predicate p that requires a subject of type t,
and i is not a t, the constraint is violated:

Consistency: subject_class_constraint
 p <knora-base:subjectClassConstraint> t
 i p j

 i <rdf:type> t

If subject i has a predicate p that requires an object of type t,
and the object of p is not a t, the constraint is violated:

Consistency: object_class_constraint
 p <knora-base:objectClassConstraint> t
 i p j

 j <rdf:type> t

Cardinality constraints

A simple implementation of a consistency rule to check
owl:maxCardinality 1, for objects that can be marked as deleted, could
look like this:

Consistency: max_cardinality_1_with_deletion_flag
 i <rdf:type> r
 r <owl:maxCardinality> "1"^^xsd:nonNegativeInteger
 r <owl:onProperty> p
 i p j
 i p k [Constraint j != k]
 j <knora-base:isDeleted> "false"^^xsd:boolean
 k <knora-base:isDeleted> "false"^^xsd:boolean

This means: if resource i is a subclass of an owl:Restriction r
with owl:maxCardinality 1 on property p, and the resource has two
different objects for that property, neither of which is marked as
deleted, the rule is violated. Note that this takes advantage of the
fact that Resource and Value have owl:cardinality 1 on isDeleted
(isDeleted must be present even if false), so we do not need to check
whether i is actually something that can be marked as deleted.

However, this implementation would be much too slow. We therefore use
two optimisations suggested by Ontotext:

	Add custom inference rules to make tables (i.e. named graphs) of
pre-calculated information about the cardinalities on properties of
subjects, and use those tables to simplify the consistency rules.

	Use the [Cut] constraint to avoid generating certain redundant
compiled rules (see Entailment
rules [http://graphdb.ontotext.com/documentation/standard/reasoning.html#entailment-rules]).

For example, to construct a table of subjects belonging to classes that
have owl:maxCardinality 1 on some property p, we use the following
custom inference rule:

Id: maxCardinality_1_table
 i <rdf:type> r
 r <owl:maxCardinality> "1"^^xsd:nonNegativeInteger
 r <owl:onProperty> p

 i p r [Context <onto:_maxCardinality_1_table>]

The constraint [Context <onto:_maxCardinality_1_table>] means that the
inferred triples are added to the context (i.e. the named graph)
http://www.ontotext.com/_maxCardinality_1_table. (Note that we have
defined the prefix onto as http://www.ontotext.com/ in the
Prefices section of the rules file.) As the GraphDB documentation on
Rules [http://graphdb.ontotext.com/documentation/standard/reasoning.html#rules]
explains:

If the context is provided, the statements produced as rule
consequences are not ‘visible’ during normal query answering. Instead,
they can only be used as input to this or other rules and only when
the rule premise explicitly uses the given context.

Now, to find out whether a subject belongs to a class with that
cardinality on a given property, we only need to match one triple. The
revised implementation of the rule
max_cardinality_1_with_deletion_flag is as follows:

Consistency: max_cardinality_1_with_deletion_flag
 i p r [Context <onto:_maxCardinality_1_table>]
 i p j [Constraint j != k]
 i p k [Cut]
 j <knora-base:isDeleted> "false"^^xsd:boolean
 k <knora-base:isDeleted> "false"^^xsd:boolean

The constraint [Constraint j != k] means that the premises will be
satisfied only if the variables j and k do not refer to the same
thing.

With these optimisations, the rule is faster by several orders of
magnitude.

Since properties whose objects can be marked as deleted must be handled
differently to properties whose objects cannot be marked as deleted, the
knora-base ontology provides a property called
objectCannotBeMarkedAsDeleted. All properties in knora-base whose
objects cannot take the isDeleted flag (including datatype properties)
should be derived from this property. This is how it is used to check
owl:maxCardinality 1 for objects that cannot be marked as deleted:

Consistency: max_cardinality_1_without_deletion_flag
 i p r [Context <onto:_maxCardinality_1_table>]
 p <rdfs:subPropertyOf> <knora-base:objectCannotBeMarkedAsDeleted>
 i p j [Constraint j != k]
 i p k [Cut]

To check owl:minCardinality 1, we do not care whether the object can
be marked as deleted, so we can use this simple rule:

Consistency: min_cardinality_1_any_object
 i p r [Context <onto:_minCardinality_1_table>]

 i p j

This means: if a subject i belongs to a class that has
owl:minCardinality 1 on property p, and i has no object for p,
the rule is violated.

To check owl:cardinality 1, we need two rules: one that checks whether
there are too few objects, and one that checks whether there are too
many. To check whether there are too few objects, we don’t care whether
the objects can be marked as deleted, so the rule is the same as
min_cardinality_1_any_object, except for the cardinality:

Consistency: cardinality_1_not_less_any_object
 i p r [Context <onto:_cardinality_1_table>]

 i p j

To check whether there are too many objects, we need to know whether the
objects can be marked as deleted or not. In the case where the objects
can be marked as deleted, the rule is the same as
max_cardinality_1_with_deletion_flag, except for the cardinality:

Consistency: cardinality_1_not_greater_with_deletion_flag
 i p r [Context <onto:_cardinality_1_table>]
 i p j [Constraint j != k]
 i p k [Cut]
 j <knora-base:isDeleted> "false"^^xsd:boolean
 k <knora-base:isDeleted> "false"^^xsd:boolean

In the case where the objects cannot be marked as deleted, the rule is
the same as max_cardinality_1_without_deletion_flag, except for the
cardinality:

Consistency: cardinality_1_not_less_any_object
 i p r [Context <onto:_cardinality_1_table>]

 i p j

Knora allows a subproperty of knora-base:hasValue or
knora-base:hasLinkTo to be a predicate of a resource only if the
resource’s class has some cardinality for the property. For convenience,
knora-base:hasValue and knora-base:hasLinkTo are subproperties of
knora-base:resourceProperty, which is used to check this constraint in
the following rule:

Consistency: resource_prop_cardinality_any
 i <knora-base:resourceProperty> j

 i p j
 i <rdf:type> r
 r <owl:onProperty> p

If resource i has a subproperty of knora-base:resourceProperty, and
i is not a member of a subclass of an owl:Restriction r with a
cardinality on that property (or on one of its base properties), the
rule is violated.

A similar rule, value_prop_cardinality_any, ensures that if a value
has a subproperty of knora-base:valueHas, the value’s class has some
cardinality for that property.

Knora API Server Design Overview

@@toc

Introduction

Knora’s responsibilities include:

	Receiving, validating, authenticating, and authorising HTTP requests from
clients (which may be web browsers or other software) to query or update
data in a Knora repository.

	Querying and updating the repository on behalf of clients.

	Filtering query results according to the user’s permissions.

	Transforming query results into Knora API responses.

	Ensuring that ontologies and data in the triplestore are consistent and
conform to the requirements of the
@ref:knora-base ontology.

	Managing the versioning of data in the triplestore.

	Working with Sipi [http://sipi.io] to store files that cannot be stored
as RDF data.

Knora is written in Scala [http://www.scala-lang.org/], using the
Akka [http://akka.io/] framework for message-based concurrency. It is
designed to work with any standards-compliant triplestore via
the SPARQL 1.1 Protocol [http://www.w3.org/TR/sparql11-protocol/], but is currently
tested only with Ontotext GraphDB [http://graphdb.ontotext.com/] (with support
for other triplestores coming soon).

Knora APIs

Knora supports different versions of its API for working with humanities data:

	@ref:Knora API v2, a standards-based
API currently under development.

	@ref:Knora API v1, a stable, legacy API
that focuses on maintaining compatibility with applications that used
Knora’s prototype software.

There is also a @ref:Knora admin API for
administering Knora repositories.

The Knora code base includes some functionality that is shared by these different
APIs, as well as separate packages for each API. Internally, Knora APIs v1 and v2 both
use functionality in the admin API. Knora API v1 uses some functionality from
API v2, but API v2 does not depend on API v1.

Design Diagram

[image: A high-level diagram of Knora.]A high-level diagram of Knora.

Modules

HTTP Module

	org.knora.webapi.routing: Knora’s Akka HTTP [https://akka.io/akka-http/] routes.
Each routing class matches URL patterns for requests involving some particular
type of data in the repository. Routes are API-specific. For example,
ResourcesRouteV2 matches URL paths starting with /v2/resources, which
represent requests involving Knora resources.

	org.knora.webapi.http: a few HTTP-related constants and utilities.

Responders Module

	org.knora.webapi.responders: Each responder is an actor that is responsible for managing
some particular type of data in the repository. A responder receives messages from
a route, does some work (e.g. querying the triplestore), and returns a reply
message. Responders are API-specific and can communicate with other responders
via messages. For example, in API v2, ResourcesResponderV2 handles requests
involving resources, and delegates some of its tasks to ValuesResponderV2,
which is responsible for requests involving values.

Store Module

	org.knora.webapi.store: Contains actors that connect to triplestores. The
most important one is HttpTriplestoreConnector, which communicates with
triplestores via the
SPARQL 1.1 Protocol [http://www.w3.org/TR/sparql11-protocol/].

Shared Between Modules

	org.knora.webapi: Contains core classes such as Main, which starts the
Knora server, and SettingsImpl, which represents the application settings
that are loaded using the Typesafe Config [https://github.com/lightbend/config]
library.

	org.knora.webapi.util: Utilities needed by different parts of the application,
such as parsing and formatting tools.

	org.knora.webapi.messages: The Akka messages used by each responder.

	org.knora.webapi.twirl: Text-generation templates for use with
the Twirl template engine [https://github.com/playframework/twirl]. Knora
uses Twirl to generate SPARQL requests and other types of text documents.

Actor Supervision and Creation

At system start, the main application supervisor actor is created in
LiveCore.scala:

@@snip KnoraLiveService.scala { #supervisor }

and through mixin also the store and responder manager actors:

@@snip ApplicationActor.scala { #store-responder }

The ApplicationActor is the first actor in the application. All other actors
are children of this actor and thus it takes also the role of the supervisor
actor. It accepts messages for starting and stopping the Knora-API, holds the
current state of the application, and is responsible for coordination of
the startup and shutdown sequence. Further, it forwards any messages meant
for responders or the store to the respective actor.

In most cases, there is only one instance of each supervised actor; such
actors do their work asynchronously in futures, so there would be no
advantage in using an actor pool. A few actors do have pools of instances,
because they do their work synchronously; this allows concurrency to be controlled
by setting the size of each pool. These pools are configured in application.conf
under akka.actor.deployment.

The ApplicationActor also starts the HTTP service as part of the startup
sequence:

@@snip ApplicationActor.scala { #start-api-server }

Coordinated Application Startup

To coordinate necessary startup tasks, the application goes through a few states at startup:

	Stopped: Application starting. Http layer is still not started.

	StartingUp: Http layer is started. Only ‘/health’ and monitoring routes are working.

	WaitingForRepository: Repository check is initiated but not yet finished.

	RepositoryReady: Repository check has finished and repository is available.

	CreatingCaches: Creating caches is initiated but not yet finished.

	CachesReady: Caches are created and ready for use.

	LoadingOntologies: Loading of ontologies is initiated but not yet finished.

	OntologiesReady: Ontologies are loaded.

	MaintenanceMode: During backup or other maintenance tasks, so that access to the API is closed

	Running: Running state. All APIs are open.

During the WaitingForRepository state, if the repository is not configured or
available, the system will indefinitely retry to access it. This allows for
prolonged startup times of the repository. Also, if checking the repository
returns an error, e.g., because the repository data needs to be migrated first,
the application will shutdown.

Concurrency

In general, Knora is written in a functional style, avoiding shared mutable
state. This makes it easier to reason about concurrency, and
eliminates an important potential source of bugs (see Out of the Tar Pit [http://curtclifton.net/papers/MoseleyMarks06a.pdf]).

The routes and actors in Knora use Akka’s ask pattern,
rather than the tell pattern, to send messages and receive responses,
because this simplifies the code considerably (using tell would
require actors to maintain complex mutable state), with no apparent
reduction in performance.

To manage asynchronous communication between actors, the Knora API
server uses Scala’s Future monad extensively. See
@ref:Futures with Akka for details.

We use Akka’s asynchronous logging interface (see Akka Logging [http://doc.akka.io/docs/akka/current/scala/logging.html]).

What the Responders Do

In Knora, a responder is an actor that receives a
request message (a Scala case class) in the ask pattern, does some work
(e.g. getting data from the triplestore), and returns a reply message (another
case class). These reply messages are are defined in org.knora.webapi.messages.
A responder can produce a reply representing a complete API
response, or part of a response that will be used by another responder.
If it’s a complete API response, there is an API-specific mechanism for
converting it into the response format that the client expects.

Store Module (org.knora.webapi.store package)

The store module is used for accessing the triplestore and other
external storage providers.

All access to the Store module goes through the StoreManager
supervisor actor. The StoreManager creates pools of actors, such as
HttpTriplestoreActor, that interface with the storage providers.

The contents of the store package are not used directly by other
packages, which interact with the store package only by sending
messages to StoreManager.

Parsing of SPARQL query results is handled by this module.

See @ref:Store Module for a more detailed discussion.

Triplestore Access

SPARQL queries are generated from templates, using the
Twirl [https://github.com/playframework/twirl] template engine. For
example, if we’re querying a resource, the template will contain a
placeholder for the resource’s IRI. The templates can be found under
src/main/twirl/queries/sparql. In many cases, different SPARQL must
be generated for different triplestores; the Twirl template function
then takes the name of the triplestore as a parameter, and may delegate
to triplestore-specific templates.

Responders are not expected to know which triplestore is being used or how it
is accessed. To perform a SPARQL SELECT query, a responder sends a SparqlSelectRequest
message to the storeManager actor, like this:

@@snip OntologyResponderV2.scala { #sparql-select }

The reply message, SparqlSelectResponse, is a data structure containing the rows
that were returned as the query result.

To perform a SPARQL CONSTRUCT query, you can use SparqlExtendedConstructRequest,
and the response will be a SparqlExtendedConstructResponse.

Error Handling

The error-handling design has these aims:

	Simplify the error-handling code in actors as much as possible.

	Produce error messages that clearly indicate the context in which
the error occurred (i.e. what the application was trying to do).

	Ensure that clients receive an appropriate error message when an
error occurs.

	Ensure that ask requests are properly terminated with an
akka.actor.Status.Failure message in the event of an error,
without which they will simply time out (see
Ask: Send and Receive Future [https://doc.akka.io/docs/akka/current/actors.html?language=scala#ask-send-and-receive-future]).

	When a actor encounters an error that isn’t the client’s fault (e.g.
a triplestore failure), log it, but don’t do this with errors caused
by bad input.

	When logging errors, include the full JVM stack trace.

The design does not yet include, but could easily accommodate,
translations of error messages into different languages.

A hierarchy of exception classes is defined in Exceptions.scala,
representing different sorts of errors that could occur. The hierarchy
has two main branches:

	RequestRejectedException, an abstract class for errors that are
the client’s fault. These errors are not logged.

	InternalServerException, an abstract class for errors that are not
the client’s fault. These errors are logged.

Exception classes in this hierarchy can be defined to include a wrapped
cause exception. When an exception is logged, its stack trace will be
logged along with the stack trace of its cause. It is therefore
recommended that low-level code should catch low-level exceptions, and
wrap them in one of our higher-level exceptions, in order to clarify the
context in which the error occurred.

To simplify error-handling in responders, a utility method called
future2Message is provided in ActorUtils. It is intended to be used
in an actor’s receive method to respond to messages in the ask
pattern. If the responder’s computation is successful, it is sent to the
requesting actor as a response to the ask. If the computation fails,
the exception representing the failure is wrapped in a Status.Failure,
which is sent as a response to the ask. If the error is a subclass of
RequestRejectedException, only the sender is notified of the error;
otherwise, the error is also logged and rethrown (so that the
KnoraExceptionHandler can handle the exception).

In many cases, we transform data from the triplestore into a Map
object. To simplify checking for required values in these collections,
the class ErrorHandlingMap is provided. You can wrap any Map in an
ErrorHandlingMap. You must provide a function that will generate an
error message when a required value is missing, and optionally a
function that throws a particular exception. Rows of SPARQL query
results are already returned in ErrorHandlingMap objects.

If you want to add a new exception class, see the comments in
Exceptions.scala for instructions.

Transformation of Exception to Client Responses

The org.knora.webapi.KnoraExceptionHandler is brought implicitly into
scope of akka-http, and by doing so registered and used to handle the
transformation of all KnoraExceptions into HttpResponses. This
handler handles only exceptions thrown inside the route and not the
actors. However, the design of reply message passing from actors (by
using future2Message), makes sure that any exceptions thrown inside
actors, will reach the route, where they will be handled.

See also @ref:Fuures with Akka.

API Routing

The API routes in the routing package are defined using the DSL
provided by the
akka-http [http://doc.akka.io/docs/akka/current/scala/http/routing-dsl/index.html]
library. A routing function has to do the following:

	Authenticate the client.

	Figure out what the client is asking for.

	Construct an appropriate request message and send it to
ResponderManagerV1, using the ask pattern.

	Return a result to the client.

To simplify the coding of routing functions, they are contained in
objects that extend org.knora.webapi.routing.Authenticator. Each
routing function performs the following operations:

	Authenticator.getUserADM is called to authenticate the user.

	The request parameters are interpreted and validated, and a request
message is constructed to send to the responder. If the request is
invalid, BadRequestException is thrown. If the request message is
requesting an update operation, it must include a UUID generated by
UUID.randomUUID, so the responder can obtain a write lock on the
resource being updated.

The routing function then passes the message to a function in an API-specific
routing utility: RouteUtilV1, RouteUtilV2, or RouteUtilADM.
This utility function sends the message to ResponderManager (which
forwards it to the relevant responder), returns a response to the client
in the appropriate format, and handles any errors.

Logging

Logging in Knora is configurable through logback.xml, allowing fine
grain configuration of what classes / objects should be logged from which level.

The Akka Actors use Akka Logging [https://doc.akka.io/docs/akka/current/logging.html]
while logging inside plain Scala Objects and Classes is done through
Scala Logging [https://github.com/lightbend/scala-logging].

Futures with Akka

@@toc

Introduction

Scala’s documentation on
futures [http://docs.scala-lang.org/overviews/core/futures.html]
introduces them in this way:

Futures provide a nice way to reason about performing many operations
in parallel – in an efficient and non-blocking way. The idea is
simple, a Future is a sort of a placeholder object that you can create
for a result that does not yet exist. Generally, the result of the
Future is computed concurrently and can be later collected. Composing
concurrent tasks in this way tends to result in faster, asynchronous,
non-blocking parallel code.

The rest of that page is well worth reading to get an overview of how
futures work and what you can do with them.

In Akka [http://akka.io/], one of the standard patterns for
communication between actors is the ask pattern [https://doc.akka.io/docs/akka/current/actors.html?language=scala#ask-send-and-receive-future],
in which you send a message to an actor and you expect a reply. When you
call the ask function (which can be written as a question mark, ?,
which acts as an infix operator), it immediately returns a Future,
which will complete when the reply is sent. As the Akka documentation
explains in Use with
Actors [https://doc.akka.io/docs/akka/snapshot/futures.html?language=scala#Use_With_Actors],
it is possible to block the calling thread until the future completes,
using Await.result. However, they say: ‘Blocking is discouraged though
as it will cause performance problems.’ In particular, by not blocking,
you can do several ask requests in parallel.

One way to avoid blocking is to register a callback on the future, which
will be called when it completes (perhaps by another thread), like this:

future.onComplete {
 case Success(result) => println(result)
 case Failure(ex) => ex.printStackTrace()
}

But this won’t work if you’re writing a method that needs return a value
based on the result of a future. In this case, you can register a
callback that transforms the result of a future into another future:

val newFuture = future.map(x => x + 1)

However, registering callbacks explicitly gets cumbersome when you need
to work with several futures together. In this case, the most convenient
alternative to blocking is to use Future as a monad. The links above
explain what this means in detail, but the basic idea is that a special
syntax, called a for-comprehension, allows you to write code that uses
futures as if they were complete, without blocking. In reality, a
for-comprehension is syntactic sugar for calling methods like map,
but it’s much easier to write and to read. You can do things like this:

val fooFuture = (fooActor ? GetFoo("foo")).mapTo[Foo]
val barFuture = (barActor ? GetBar("bar")).mapTo[Bar]

val totalFuture = for {
 foo: Foo <- fooFuture
 bar: Bar <- barFuture

 total = foo.getCount + bar.getCount
} yield total

Here the messages to fooActor and barActor are sent and processed in
parallel, but you’re guaranteed that total won’t be calculated until
the values it needs are available. Note that if you construct
fooFuture and barFuture inside the for comprehension, they won’t
be run in parallel (see Scala for-comprehension with concurrently
running
futures [http://buransky.com/scala/scala-for-comprehension-with-concurrently-running-futures/]).

Handling Errors with Futures

The constructors and methods of Future (like those of Try) catch
exceptions, which cause the future to fail. This very useful property of
futures means that you usually don’t need try-catch blocks when
using the Future monad (although it is sometimes helpful to include
them, in order to catch low-level exceptions and wrap them in
higher-level ones). Any exception thrown in code that’s being run
asynchronously by Future (including in the yield expression of a
for comprehension) will be caught, and the result will be a Future
containing a Failure. Also, in the previous example, if fooActor or
barActor returns a Status.Failure message, the for-comprehension
will also yield a failed future.

However, you need to be careful with the first line of the
for-comprehension. For example, this code doesn’t handle exceptions
correctly:

private def doFooQuery(iri: IRI): Future[String] = {
 for {
 queryResponse <- (storeManager ? SparqlSelectRequest(queries.sparql.v1.txt.getFoo(iri).toString())).mapTo[SparqlSelectResponse]
 ...
 } yield ...
}

The getFoo() method calls a
Twirl [https://github.com/playframework/twirl] template function to
generate SPARQL. The ? operator returns a Future. However, the
template function is not run asynchronously, because it is called
before the Future constructor is called. So if the template function
throws an exception, it won’t be caught here. Instead, you can do this:

private def doFooQuery(iri: IRI): Future[String] = {
 for {
 queryString <- Future(queries.sparql.v1.txt.getFoo(iri).toString())
 queryResponse <- (storeManager ? SparqlSelectRequest(queryString)).mapTo[SparqlSelectResponse]
 ...
 } yield ...
}

Here the Future constructor will call the template function
asynchronously, and catch any exceptions it throws. This is only
necessary if you need to call the template function at the very
beginning of a for-comprehension. In the rest of the for
comprehension, you’ll already implicitly have a Future object.

Using recover on Futures

By using recover on a Future, an apt error message can be thrown if
the Future fails. This is particularly useful when an an error message
should be made more clear depending on the context the Future is used
in.

For example, we are asking the resources responder to query for a
certain resource in order to process it in a special way. However, the
client does not know that the resources responder is sent a request and
in case the resource cannot be found, the message sent back from the
resources responder (NotFoundException) would not make sense to it.
Instead, we would like to handle the message in a way so that it makes
sense for the operation the client actually executed. We can do this by
calling recover on a Future.

private def mySpecialResourceRequest(iri: IRI, userProfile: UserProfileV1): Future[...] = {

 val resourceRequestFuture = for {
 resResponse: ResourceFullResponseV1 <- (responderManager ? ResourceFullGetRequestV1(iri = iri, userProfile = userProfile, getIncoming = false)).mapTo[ResourceFullResponseV1]
 } yield resResponse

 val resourceRequestFutureRecovered = resourceRequestFuture.recover {
 case notFound: NotFoundException => throw BadRequestException(s"Special resource handling failed because the resource could not be found: ${notFound.message}")
 }

 for {

 res <- resourceRequestFutureRecovered

 ...

 } yield ...

}

Please note that the content of the Future has to be accessed using
<- to make this work correctly. Otherwise the content will never be
looked at.

Designing with Futures

In the current design, Knora almost never blocks to wait
for a future to complete. The normal flow of control works like this:

	Incoming HTTP requests are handled by an actor called
KnoraService, which delegates them to routing functions (in
the routing package).

	For each request, a routing function gets an Akka HTTP
RequestContext, and calls RouteUtilV1.runJsonRoute (in API v1)
or RouteUtilV2.runRdfRouteWithFuture (in API v2) to send a
message to a supervisor actor to fulfil the request. This creates
a Future that will complete when the relevant responder sends
its reply. The routing utility registers a callback on this Future
to handle the reply message when it becomes available.

	The supervisor forwards the message to be handled by the appropriate
responder.

	The responder’s receive method receives the message, and calls
some private method that produces a reply message inside a Future.
This may involve sending messages to other actors using ask,
getting futures back, and combining them into a single future
containing the reply message.

	The responder passes that future to ActorUtils.future2Message,
which registers a callback on it. When the future completes (perhaps
in another thread), the callback sends the reply message. In the
meantime, the responder doesn’t block, so it can start handling the
next request.

	When the responder’s reply becomes available, the routing utility’s
callback registered in (2) calls complete on the RequestContext, which
sends an HTTP response to the client.

The basic rule of thumb is this: if you’re writing a method in an actor,
and anything in the method needs to come from a future (e.g. because you
need to use ask to get some information from another actor), have the
method return a future.

Mixing Futures with non-Futures

If you have a match ... case or if expression, and one branch
obtains some data in a future, but another branch can produce the data
immediately, you can wrap the result of the latter branch in a future,
so that both branches have the same type. Here we use an alternative
implementation of scala.concurrent.Future, found in
akka.http.scaladsl.util.FastFuture, which tries to avoid scheduling to
an scala.concurrent.ExecutionContext if possible, i.e. if the given
future value is already present:

def getTotalOfFooAndBar(howToGetFoo: String): Future[Int] = {
 for {
 foo <- howToGetFoo match {
 case "askForIt" => (fooActor ? GetFoo("foo")).mapTo[Foo]
 case "createIt" => FastFuture.successful(new Foo())
 }

 bar <- (barActor ? GetBar("bar")).mapTo[Bar]

 total = foo.getCount + bar.getCount
 } yield total
}

How to Write For-Comprehensions

Here are some basic rules for writing for-comprehensions:

	The first line of a for-comprehension has to be a “generator”,
i.e. it has to use the <- operator. If you want to write an
assignment (using =) as the first line, the workaround is to wrap
the right-hand side in a monad (like Future) and use <- instead.

	Assignments (using =) are written without val.

	You’re not allowed to write statements that throw away their return
values, so if you want to call something like println that returns
Unit, you have to assign its return value to _.

The yield returns an object of the same type as the generators, which
all have to produce the same type (e.g. Future).

Execution Contexts

Whenever you use a future, there has to be an implicit ‘execution
context’ in scope. Scala’s documentation on
futures [http://docs.scala-lang.org/overviews/core/futures.html] says,
‘you can think of execution contexts as thread pools’.

If you don’t have an execution context in scope, you’ll get a compile
error asking you to include one, and suggesting that you could use
import scala.concurrent.ExecutionContext.Implicits.global. Don’t do
this, because the global Scala execution context is not the most
efficient option. Instead, use Knora’s custom execution context like so:

implicit val executionContext: ExecutionContext = system.dispatchers.lookup(KnoraDispatchers.KnoraActorDispatcher)

HTTP Module

The http module holds only a convenience method for adding CORS support
to api routes. The CORS implementation uses the
akka-http-cors [https://github.com/lomigmegard/akka-http-cors]
directives implementation.

Knora Design Principles

@@toc { depth=1 }

@@@ index

	Design Overview

	Futures with Akka

	HTTP Module

	Store Module

	Triplestore Updates

	Consistency Checking

	Authentication

@@@

Store Module

@@toc

Overview

The store module houses the different types of data stores supported by
Knora. At the moment, only triplestores and IIIF servers (Sipi) are supported.
The triplestore support is implemented in the
org.knora.webapi.store.triplestore package and the IIIF server support in
org.knora.webapi.store.iiif package.

Lifecycle

At the top level, the store package houses the StoreManager-Actor
which is started when Knora starts. The StoreManager then starts the
TriplestoreManager and IIIFManager, which each in turn starts their
correct actor implementation.

HTTP-based Triplestores

HTTP-based triplestore support is implemented in the
org.knora.webapi.triplestore.http package.

An HTTP-based triplestore is one that is accessed remotely over the HTTP
protocol. HttpTriplestoreConnector supports the following triplestores:

	Ontotext GraphDB

	Fuseki 2 (not currently supported)

GraphDB

Fuseki 2

Embedded Triplestores

Embedded triplestores are implemented in the
org.knora.webapi.triplestore.embedded package.

An embedded triplestore is one that runs in the same JVM as the Knora
API server.

Apache Jena TDB

The support for embedded Jena TDB is currently dropped. The
documentation and the code will remain in the repository. You can use it
at your own risk.

The support for the embedded Jena-TDB triplestore is implemented in
org.knora.webapi.triplestore.embedded.JenaTDBActor.

The relevant Jena libraries that are used are the following:

	Jena API - The library used to work programmatically with RDF data

	Jena TDB - Their implementation of a triple store

Concurrency

Jena provides concurrency on different levels.

On the Jena TDB level there is the Dataset object, representing the
triple store. On every access, a transaction (read or write) can be
started.

On the Jena API level there is a Model object, which is equivalent to
an RDF Graph. Here we can lock the model, so that MRSW (Multiple
Reader Single Writer) access is allowed.

	https://jena.apache.org/documentation/tdb/tdb_transactions.html

	https://jena.apache.org/documentation/notes/concurrency-howto.html

Implementation

We employ transactions on the Dataset level. This means that every
thread that accesses the triplestore, starts a read or write enabled
transaction.

The transaction mechanism in TDB is based on write-ahead-logging. All
changes made inside a write-transaction are written to journals, then
propagated to the main database at a suitable moment. This design allows
for read-transactions to proceed without locking or other overhead over
the base database.

Transactional TDB supports one active write transaction, and multiple
read transactions at the same time. Read-transactions started before a
write-transaction commits see the database in a state without any
changes visible. Any transaction starting after a write-transaction
commits sees the database with the changes visible, whether fully
propagates back to the database or not. There can be active read
transactions seeing the state of the database before the updates, and
read transactions seeing the state of the database after the updates
running at the same time.

Configuration

In application.conf set to use the embedded triplestore:

 triplestore {
 dbtype = "embedded-jena-tdb"

 embedded-jena-tdb {
 persisted = true // "false" -> memory, "true" -> disk
 loadExistingData = false // "false" -> use data if exists, "false" -> create a fresh store
 storage-path = "_TMP" // ignored if "memory"
 }

 reload-on-start = false // ignored if "memory" as it will always reload

 rdf-data = [
 {
 path = "../knora-ontologies/knora-base.ttl"
 name = "http://www.knora.org/ontology/knora-base"
 }
 {
 path = "../knora-ontologies/salsah-gui.ttl"
 name = "http://www.knora.org/ontology/salsah-gui"
 }
 {
 path = "_test_data/ontologies/incunabula-onto.ttl"
 name = "http://www.knora.org/ontology/0803/incunabula"
 }
 {
 path = "_test_data/demo_data/incunabula-demo-data.ttl"
 name = "http://www.knora.org/data/incunabula"
 }
 {
 path = "_test_data/ontologies/images-onto.ttl"
 name = "http://www.knora.org/ontology/0804/dokubib"
 }
 {
 path = "_test_data/demo_data/images-demo-data.ttl"
 name = "http://www.knora.org/data/dokubib"
 }
]
 }

Here the storage is set to persistent, meaning that a Jena TDB store
will be created under the defined tdb-storage-path. The
reload-on-start flag, if set to true would reload the triplestore
with the data referenced in rdf-data.

TDB Disk Persisted Store

Make sure to set reload-on-start to true if run for the first time.
This will create a TDB store and load the data.

If only read access is performed, then Knora can be run once with
reloading enabled. After that, reloading can be turned off, and the
persisted TDB store can be reused, as any data found under the
tdb-storage-path will be reused.

If the TDB storage files get corrupted, then just delete the folder and
reload the data anew.

Actor Messages

	ResetTripleStoreContent(rdfDataObjects: List[RdfDataObject])

	ResetTripleStoreContentACK()

The embedded Jena TDB can receive reset messages, and will ACK when
reloading of the data is finished. RdfDataObject is a simple case
class, containing the path and name (the same as rdf-data in the
config file)

As an example, to use it inside a test you could write something like:

 val rdfDataObjects = List (
 RdfDataObject(path = "../knora-ontologies/knora-base.ttl",
 name = "http://www.knora.org/ontology/knora-base"),
 RdfDataObject(path = "../knora-ontologies/salsah-gui.ttl",
 name = "http://www.knora.org/ontology/salsah-gui"),
 RdfDataObject(path = "_test_data/ontologies/incunabula-onto.ttl",
 name = "http://www.knora.org/ontology/0803/incunabula"),
 RdfDataObject(path = "_test_data/all_data/incunabula-data.ttl",
 name = "http://www.knora.org/data/incunabula")
)

 "Reload data " in {
 storeManager ! ResetTripleStoreContent(rdfDataObjects)
 expectMsg(300.seconds, ResetTripleStoreContentACK())
 }

IIIF Servers

Currently, only support for SIPI is implemented in
org.knora.webapi.store.iiifSipiConnector.

Triplestore Updates

@@toc

Requirements

General

The supported update operations are:

	Create a new resource with its initial values.

	Add a new value.

	Change a value.

	Delete a value (i.e. mark it as deleted).

	Delete a resource (i.e. mark it as deleted).

Users must be able to edit the same data concurrently.

Each update must be atomic and leave the database in a consistent,
meaningful state, respecting ontology constraints and permissions.

The application must not use any sort of long-lived locks, because they
tend to hinder concurrent edits, and it is difficult to ensure that they
are released when they are no longer needed. Instead, if a user requests
an update based on outdated information (because another user has just
changed something, and the first user has not found out yet), the update
must be not performed, and the application must notify the user who
requested it, suggesting that the user should check the relevant data
and try again if necessary. (We may eventually provide functionality to
help users merge edits in such a situation. The application can also
encourage users to coordinate with one another when they are working on
the same data, and may eventually provide functionality to facilitate
this coordination.)

We can assume that each SPARQL update operation will run in its own
database transaction with an isolation level of ‘read committed’. This
is what GraphDB does when it receives a SPARQL update over HTTP (see
GraphDB SE
Transactions [http://graphdb.ontotext.com/documentation/standard/storage.html#transaction-control]).
We cannot assume that it is possible to run more than one SPARQL update
in a single database transaction. (The SPARQL 1.1
Protocol [http://www.w3.org/TR/sparql11-protocol/] does not provide a
way to do this, and currently it can be done only by embedding the
triplestore in the application and using a vendor-specific API, but we
cannot require this in Knora.)

Permissions

To create a new value (as opposed to a new version of an existing
value), the user must have permission to modify the containing resource.

To create a new version of an existing value, the user needs only to
have permission to modify the current version of the
value; no permissions on the resource are needed.

Since changing a link requires deleting the old link and creating a new
one (as described in @ref:Linking), a user wishing
to change a link must have modify permission on both the containing
resource and the knora-base:LinkValue for the existing link.

When a new resource or value is created, it can be given default permissions
specified the project’s admin data, or (only in API v2) custom permissions
can be specified.

Ontology Constraints

Knora must not allow an update that would violate an ontology
constraint.

When creating a new value (as opposed to adding a new version of an
existing value), Knora must not allow the update if the containing
resource’s OWL class does not contain a cardinality restriction for the
submitted property, or if the new value would violate the cardinality
restriction.

It must also not allow the update if the type of the submitted value
does not match the knora-base:objectClassConstraint of the property,
or if the property has no knora-base:objectClassConstraint. In the
case of a property that points to a resource, Knora must ensure that the
target resource belongs to the OWL class specified in the property’s
knora-base:objectClassConstraint, or to a subclass of that class.

Duplicate and Redundant Values

When creating a new value, or changing an existing value, Knora checks
whether the submitted value would duplicate an existing value for the
same property in the resource. The definition of ‘duplicate’ depends on
the type of value; it does not necessarily mean that the two values are
strictly equal. For example, if two text values contain the same Unicode
string, they are considered duplicates, even if they have different
Standoff markup. If resource R has property P with value V1, and
V1 is a duplicate of V2, the API server must not add another
instance of property P with value V2. However, if the requesting
user does not have permission to see V2, the duplicate is allowed,
because forbidding it would reveal the contents of V2 to the user.

When creating a new version of a value, Knora also checks whether the
new version is redundant, given the existing value. It is possible for
the definition of ‘redundant’ can depend on the type of value, but in
practice, it means that the values are strictly equal: any change,
however trivial, is allowed.

Versioning

Each Knora value (i.e. something belonging to an OWL class derived from
knora-base:Value) is versioned. This means that once created, a value
is never modified. Instead, ‘changing’ a value means creating a new
version of the value — actually a new value — that points to the
previous version using knora-base:previousValue. The versions of a
value are a singly-linked list, pointing backwards into the past. When a
new version of a value is made, the triple that points from the resource
to the old version (using a subproperty of knora-base:hasValue) is
removed, and a triple is added to point from the resource to the new
version. Thus the resource always points only to the current version of
the value, and the older versions are available only via the current
version’s knora-base:previousValue predicate.

Unlike values, resources (members of OWL classes derived from
knora-base:Resource) are not versioned. The data that is attached to a
resource, other than its values, can be modified.

Deleting

Knora does not actually delete resources or values; it only marks them
as deleted. Deleted data is normally hidden. All resources and values
must have the predicate knora- base:isDeleted, whose object is a
boolean. If a resource or value has been marked as deleted, it has
knora-base:isDeleted true and has a knora-base:deleteDate. An
optional knora-base:deleteComment may be added to explain why the
resource or value has been marked as deleted.

Normally, a value is marked as deleted without creating a new version of
it. However, link values must be treated as a special case. Before a
LinkValue can be marked as deleted, its reference count must be
decremented to 0. Therefore, a new version of the LinkValue is made,
with a reference count of 0, and it is this new version that is marked
as deleted.

Since it is necessary to be able to find out when a resource was
deleted, it is not possible to undelete a resource. Moreover, to
simplify the checking of cardinality constraints, and for consistency
with resources, it is not possible to undelete a value, and no new
versions of a deleted value can be made. Instead, if desired, a new
resource or value can be created by copying data from a deleted resource
or value.

Linking

Links must be treated differently to other types of values. Knora needs
to maintain information about the link, including permissions and a
version history. Since the link does not have a unique IRI of its own,
Knora uses RDF
reifications [http://www.w3.org/TR/rdf-schema/#ch_reificationvocab] for
this purpose. Each link between two resources has exactly one
(non-deleted) knora-base:LinkValue. The resource itself has a
predicate that points to the LinkValue, using a naming convention in
which the word Value is appended to the name of the link predicate to
produce the link value predicate. For example, if a resource
representing a book has a predicate called hasAuthor that points to
another resource, it must also have a predicate called hasAuthorValue
that points to the LinkValue in which information about the link is
stored. To find a particular LinkValue, one can query it either by
using its IRI (if known), or by using its rdf:subject,
rdf:predicate, and rdf:object (and excluding link values that are
marked as deleted).

Like other values, link values are versioned. The link value predicate
always points from the resource to the current version of the link
value, and previous versions are available only via the current
version’s knora-base:previousValue predicate. Deleting a link means
deleting the triple that links the two resources, and making a new
version of the link value, marked with knora-base:isDeleted. A triple
then points from the resource to this new, deleted version (using the
link value property).

The API allows a link to be ‘changed’ so that it points to a different
target resource. This is implemented as follows: the existing triple
connecting the two resources is removed, and a new triple is added using
the same link property and pointing to the new target resource. A new
version of the old link’s LinkValue is made, marked with
knora-base:isDeleted. A new LinkValue is made for the new link. The
new LinkValue has no connection to the old one.

When a resource contains knora-base:TextValue with Standoff markup
that includes a reference to another resource, this reference is
materialised as a direct link between the two resources, to make it
easier to query. A special link property,
knora-base:hasStandoffLinkTo, is used for this purpose. The
corresponding link value property, knora-base:hasStandoffLinkToValue,
points to a LinkValue. This LinkValue contains a reference count,
indicated by knora-base:valueHasRefCount, that represents the number
of text values in the containing resource that include one or more
Standoff references to the specified target resource. Each time this
number changes, a new version of this LinkValue is made. When the
reference count reaches zero, the triple with
knora-base:hasStandoffLinkTo is removed, and a new version of the
LinkValue is made and marked with knora-base:isDeleted. If the same
resource reference later appears again in a text value, a new triple is
added using knora-base:hasStandoffLinkTo, and a new LinkValue is
made, with no connection to the old one.

For consistency, every LinkValue contains a reference count. If the
link property is not knora-base:hasStandoffLinkTo, the reference count
will always be either 1 (if the link exists) or 0 (if it has been
deleted, in which case the link value will also be marked with
knora-base:isDeleted).

When a LinkValue is created for a standoff resource reference, it is
given the same permissions as the text value containing the reference.

Design

Responsibilities of Responders

The resources responder (ResourcesResponderV1 in API v1, ResourcesResponderV2
in API v2) has sole responsibility for generating SPARQL to
create and updating resources, and the values responder (ValuesResponderV1
or ValuesResponderV2) has sole responsibility for generating SPARQL to create
and update values. When a new resource is created with its values, the values responder
generates SPARQL statements that can be included in the INSERT
clause of a SPARQL update to create the values, and
the resources responder adds these statements to the SPARQL update that
creates the resource. This ensures that the resource and its values are
created in a single SPARQL update operation, and hence in a single
triplestore transaction.

Application-level Locking

The ‘read committed’ isolation level cannot prevent a scenario where two
users want to add the same data at the same time. It is possible that
both requests would do pre-update checks and simultaneously find that it
is OK to add the data, and that both updates would then succeed,
inserting redundant data and possibly violating ontology constraints.
Therefore, Knora uses short-lived, application-level write locks on
resources, to ensure that only one request at a time can update a given
resource. Before each update, the application acquires a lock on a resource.
To prevent deadlocks, Knora locks only one resource per API operation.
It then does the pre-update checks and the update, then releases the
lock. The lock implementation (in IriLocker) requires each API
request message to include a random UUID, which is generated in the
@ref:API Routing package. Using
application-level locks allows us to do pre-update checks in their own
transactions, and finally to do the SPARQL update in its own
transaction.

Ensuring Data Consistency

Knora enforces consistency constraints using three redundant mechanisms:

	By doing pre-update checks using SPARQL SELECT queries and cached
ontology data.

	By doing checks in the WHERE clauses of SPARQL updates.

	By using GraphDB’s built-in consistency checker (see
@ref:Consistency Checking).

We take the view that redundant consistency checks are a good thing.

Pre-update checks are SPARQL SELECT queries that are executed while
holding an application-level lock on the resource to be updated. These
checks should work with any triplestore, and can return helpful,
Knora-specific error messages to the client if the request would violate
a consistency constraint.

However, the SPARQL update itself is our only chance to do pre-update
checks in the same transaction that will perform the update. The design
of the SPARQL 1.1 Update [http://www.w3.org/TR/sparql11-update/]
standard makes it possible to ensure that if certain conditions are not
met, the update will not be performed. In our SPARQL update code, each
update contains a WHERE clause, possibly a DELETE clause, and an
INSERT clause. The WHERE clause is executed first. It performs
consistency checks and provides values for variables that are used in
the DELETE and/or INSERT clauses. In our updates, if the
expectations of the WHERE clause are not met (e.g. because the data to
be updated does not exist), the WHERE clause should return no results;
as a result, the update will not be performed.

Regardless of whether the update changes the contents of the
triplestore, it returns nothing. If the update did nothing because the
conditions of the WHERE clause were not met, the only way to find out is
to do a SELECT afterwards. Moreover, in this case, there is no
straightforward way to find out which conditions was not met. This is
one reason why Knora does pre-update checks using separate SELECT
queries and/or cached ontology data, before performing the update.
This makes it possible to return specific error messages to the user to
indicate why an update cannot be performed.

Moreover, while some checks are easy to do in a SPARQL update, others
are difficult, impractical, or impossible. Easy checks include checking
whether a resource or value exists or is deleted, and checking that the
knora-base:objectClassConstraint of a predicate matches the rdf:type
of its intended object. Cardinality checks are not very difficult, but
they perform poorly on Jena. Knora does not do permission checks in
SPARQL, because its permission-checking algorithm is too complex to be
implemented in SPARQL. For this reason, Knora’s check for duplicate
values cannot be done in SPARQL update code, because it relies on
permission checks.

In a bulk import operation, which can create a large number of resources
in a single SPARQL update, a WHERE clause can become very expensive
for the triplestore, in terms of memory as well as execution time.
Moreover, RDF4J (and hence GraphDB) uses a recursive algorithm to parse
SPARQL queries with WHERE clauses, so the size of a WHERE clause is
limited by the stack space available to the Java Virtual Machine.
Therefore, in bulk import operations, Knora uses INSERT DATA, which
does not involve a WHERE clause. Bulk imports thus rely on checks (1)
and (3) above.

SPARQL Update Examples

The following sample SPARQL update code is simpler than what Knora
actually does. It is included here to illustrate the way Knora’s SPARQL
updates are structured and how concurrent updates are handled.

Finding a value IRI in a value’s version history

We will need this query below. If a value is present in a resource
property’s version history, the query returns everything known about the
value, or nothing otherwise:

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix knora-base: <http://www.knora.org/ontology/knora-base#>

SELECT ?p ?o
WHERE {
 BIND(IRI("http://rdfh.ch/c5058f3a") as ?resource)
 BIND(IRI("http://www.knora.org/ontology/0803/incunabula#book_comment") as ?property)
 BIND(IRI("http://rdfh.ch/c5058f3a/values/testComment002") as ?searchValue)

 ?resource ?property ?currentValue .
 ?currentValue knora-base:previousValue* ?searchValue .
 ?searchValue ?p ?o .
}

Creating the initial version of a value

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix knora-base: <http://www.knora.org/ontology/knora-base#>

WITH <http://www.knora.org/ontology/0803/incunabula>
INSERT {
 ?newValue rdf:type ?valueType ;
 knora-base:valueHasString """Comment 1""" ;
 knora-base:attachedToUser <http://rdfh.ch/users/91e19f1e01> ;
 knora-base:attachedToProject <http://rdfh.ch/projects/77275339> ;
 knora-base:hasPermissions "V knora-admin:KnownUser,knora-admin:UnknownUser|M knora-admin:ProjectMember" ;
 knora-base:valueTimestamp ?currentTime .

 ?resource ?property ?newValue .
} WHERE {
 BIND(IRI("http://rdfh.ch/c5058f3a") as ?resource)
 BIND(IRI("http://www.knora.org/ontology/0803/incunabula#book_comment") as ?property)
 BIND(IRI("http://rdfh.ch/c5058f3a/values/testComment001") AS ?newValue)
 BIND(IRI("http://www.knora.org/ontology/knora-base#TextValue") AS ?valueType)
 BIND(NOW() AS ?currentTime)

 # Do nothing if the resource doesn't exist.
 ?resource rdf:type ?resourceClass .

 # Do nothing if the submitted value has the wrong type.
 ?property knora-base:objectClassConstraint ?valueType .
}

To find out whether the insert succeeded, the application can use the
query in @ref:Finding a value IRI in a value’s version history
to look for the new IRI in the property’s version history.

Adding a new version of a value

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix knora-base: <http://www.knora.org/ontology/knora-base#>

WITH <http://www.knora.org/ontology/0803/incunabula>
DELETE {
 ?resource ?property ?currentValue .
} INSERT {
 ?newValue rdf:type ?valueType ;
 knora-base:valueHasString """Comment 2""" ;
 knora-base:previousValue ?currentValue ;
 knora-base:attachedToUser <http://rdfh.ch/users/91e19f1e01> ;
 knora-base:attachedToProject <http://rdfh.ch/projects/77275339> ;
 knora-base:hasPermissions "V knora-admin:KnownUser,knora-admin:UnknownUser|M knora-admin:ProjectMember" ;
 knora-base:valueTimestamp ?currentTime .

 ?resource ?property ?newValue .
} WHERE {
 BIND(IRI("http://rdfh.ch/c5058f3a") as ?resource)
 BIND(IRI("http://rdfh.ch/c5058f3a/values/testComment001") AS ?currentValue)
 BIND(IRI("http://rdfh.ch/c5058f3a/values/testComment002") AS ?newValue)
 BIND(IRI("http://www.knora.org/ontology/knora-base#TextValue") AS ?valueType)
 BIND(NOW() AS ?currentTime)

 ?resource ?property ?currentValue .
 ?property knora-base:objectClassConstraint ?valueType .
}

The update request must contain the IRI of the most recent version of
the value (http://rdfh.ch/c5058f3a/values/c3295339). If this is
not in fact the most recent version (because someone else has done an
update), this operation will do nothing (because the WHERE clause will
return no rows). To find out whether the update succeeded, the
application will then need to do a SELECT query using the query in
@ref:Finding a value IRI in a value’s version history.
In the case of concurrent updates, there are two possibilities:

	Users A and B are looking at version 1. User A submits an update and
it succeeds, creating version 2, which user A verifies using a
SELECT. User B then submits an update to version 1 but it fails,
because version 1 is no longer the latest version. User B’s SELECT
will find that user B’s new value IRI is absent from the value’s
version history.

	Users A and B are looking at version 1. User A submits an update and
it succeeds, creating version 2. Before User A has time to do a
SELECT, user B reads the new value and updates it again. Both users
then do a SELECT, and find that both their new value IRIs are
present in the value’s version history.

Getting all versions of a value

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix knora-base: <http://www.knora.org/ontology/knora-base#>

SELECT ?value ?valueTimestamp ?previousValue
WHERE {
 BIND(IRI("http://rdfh.ch/c5058f3a") as ?resource)
 BIND(IRI("http://www.knora.org/ontology/0803/incunabula#book_comment") as ?property)
 BIND(IRI("http://rdfh.ch/c5058f3a/values/testComment002") AS ?currentValue)

 ?resource ?property ?currentValue .
 ?currentValue knora-base:previousValue* ?value .

 OPTIONAL {
 ?value knora-base:valueTimestamp ?valueTimestamp .
 }

 OPTIONAL {
 ?value knora-base:previousValue ?previousValue .
 }
}

This assumes that we know the current version of the value. If the
version we have is not actually the current version, this query will
return no rows.

Build Process

@@toc

SBT Build Configuration

Knora’s complete build definition is defined in KnoraBuild.sbt:

@@snipKnoraBuild.sbt { }

Building Deployment Packages

Deployment packages for salsah1 and webapi can be built by using the following SBT tasks:

	$ sbt stage - Stages the app so that it can be run locally without having the app packaged.

	$ sbt universal:packageBin - Generates a universal zip file

	$ sbt universal:packageZipTarball - Generates a universal tgz file

The tasks can be scoped by prefixing salsah1/ or webapi/, e.g., to only run sbt stage
for the webapi project, run:

$ sbt webapi/stage

Building Docker Images

Docker images for salsah1 and webapi can be built by using the following SBT tasks:

	$ sbt docker:stage - Generates a directory with the Dockerfile and environment prepared for creating a Docker image.

	$ sbt docker:publishLocal - Builds an image using the local Docker server.

	$ sbt docker:publish - Builds an image using the local Docker server, and pushes it to the configured remote repository.

	$ sbt docker:clean - Removes the built image from the local Docker server.

The tasks can be scoped by prefixing salsah1/ or webapi/, e.g., to only run sbt docker:stage
for the webapi project, run:

$ sbt webapi/docker:stage

Running the Knora Stack (graphdb, webapi, salsah1, sipi)

The complete knora stack (graphdb, webapi, salsah1, sipi) can be started by invoking the following SBT task:

$ sbt dockerComposeUp

This will build, publish locally and use the docker images for webapi and salsah1. The versions defined in
project/Dependencies will be used for GraphDB and Sipi.

The following SBT tasks are available:

	$ sbt dockerComposeUp - starts the whole stack and prints out a summary

	$ sbt dockerComposeRestart - stops and the starts again the whole stack

	$ sbt dockerComposeStop - stops the whole stack

Running the whole Knora stack requires some configuration, which can be done through environment variables.
These can be set in the shell before running sbt:

	KNORA_GDB_TYPE - the type of GraphDB (SE or FREE). Possible values are graphdb-se or graphdb-free.
The default value is graphdb-se.

	KNORA_GDB_HOME - the path to folder where the GraphDB data will be stored. Default is GITREPOROOT/triplestores/graphdb/home.

	KNORA_GDB_LICENSE - the path to the GraphDB-SE license. Default is GITREPOROOT/triplestores/graphdb/graphdb.license.

Building Documentation

There are some prerequisites described in the docs/Readme.md [https://github.com/dhlab-basel/Knora/blob/develop/docs/Readme].

The complete Knora documentation site is built by invoking the following tasks:

	$ sbt docs/makeSite - generates the documentation which can be found under docs/target/site/

	$ sbt docs/previewSite - previews the generated site by launching a static web server

	$ sbt docs/previewAuto - previews the generated site by launching a dynamic server updating its content at each modification in your source files.

Both preview tasks launch the server on port 4000 and attempt to connect your browser to http://localhost:4000/.

Publishing Documentation

To publish the documentation, you need to be on the develop branch and then execute the following task:

$ sbt docs/ghpagesPushSite

This task will build all documentation and publish it to the gh-pages branch.

Building and Running

@@toc

Starting a Triplestore

Start a triplestore (GraphDB-Free or GraphDB-SE). Download distribution from Ontotext [http://ontotext.com].
Unzip distribution to a place of your choosing and run the following:

$ cd /to/unziped/location
$./bin/graphdb -Dgraphdb.license.file=/path/to/GRAPHDB_SE.license

Here we use GraphDB-SE which needs to be licensed separately.

Then in another terminal, initialize the data repository and load some test data:

$ cd KNORA_PROJECT_DIRECTORY/webapi/scripts
$./graphdb-se-local-init-knora-test.sh

Then in another terminal, start the Redis Server [https://redis.io]:

$ redis-server

Then go back to the webapi root directory and use SBT to start the API
server:

$ cd KNORA_PROJECT_DIRECTORY
$ sbt
> webapi / compile
> webapi / reStart

To shut down Knora:

> webapi / reStop

Running the automated tests

Make sure you’ve started the triplestore as shown above.

Then in another terminal, initialise the repository used for automated
testing:

$ cd KNORA_PROJECT_DIRECTORY/webapi/scripts
$./graphdb-se-local-init-knora-test-unit.sh

Run the automated tests from sbt:

> webapi / graphdb:test

Load Testing on Mac OS X

To test Knora with many concurrent connections on Mac OS
X, you will need to adjust some kernel parameters to allow more open
connections, to recycle ephemeral ports more quickly, and to use a wider
range of ephemeral port numbers. The script
webapi/scripts/macOS-kernel-test-config.sh will do this.

Continuous Integration

For continuous integration testing, we use Github CI Actions. Every commit
pushed to the git repository or every pull request, triggers the build.
Additionally, in Github there is a small checkmark beside every commit,
signaling the status of the build (successful, unsuccessful, ongoing).

The build that is executed on Github CI Actions is defined in
.github/workflows/main.yml, and looks like this:

@@snipmain.yml { }

Webapi Server Startup-Flags

The Webapi-Server can be started with a number of flags. These flags can
be supplied either to the reStart or the run command in sbt, e.g.,:

$ sbt
> webapi / reStart flag

or

$ sbt
> webapi / run flag

loadDemoData - Flag

When the webapi-server is started with the loadDemoData flag, then at
startup, the data which is configured in application.conf under the
app.triplestore.rdf-data key is loaded into the triplestore, and any
data in the triplestore is removed beforehand.

Usage:

$ sbt
> webapi / reStart loadDemoData

allowReloadOverHTTP - Flag

When the webapi.server is started with the allowReloadOverHTTP flag (reStart -r),
then the v1/store/ResetTriplestoreContent route is activated. This
route accepts a POST request, with a JSON payload consisting of the
following example content:

[
 {
 "path": "../knora-ontologies/knora-base.ttl",
 "name": "http://www.knora.org/ontology/knora-base"
 },
 {
 "path": "../knora-ontologies/salsah-gui.ttl",
 "name": "http://www.knora.org/ontology/salsah-gui"
 },
 {
 "path": "_test_data/ontologies/incunabula-onto.ttl",
 "name": "http://www.knora.org/ontology/0803/incunabula"
 },
 {
 "path": "_test_data/all_data/incunabula-data.ttl",
 "name": "http://www.knora.org/data/incunabula"
 }
]

This content corresponds to the payload sent with the
ResetTriplestoreContent message, defined inside the
org.knora.webapi.messages.v1.store.triplestoremessages package. The
path being the relative path to the ttl file which will be loaded
into a named graph by the name of name.

Usage:

$ sbt
> webapi / reStart allowReloadOverHTTP

Docker Cheat Sheet

@@toc

A complete cheat sheet can be found
here [https://github.com/wsargent/docker-cheat-sheet]

Lifecycle

	docker
create [https://docs.docker.com/engine/reference/commandline/create]
creates a container but does not start it.

	docker run [https://docs.docker.com/engine/reference/commandline/run]
creates and starts a container in one operation.

	docker
rename [https://docs.docker.com/engine/reference/commandline/rename/]
allows the container to be renamed.

	docker rm [https://docs.docker.com/engine/reference/commandline/rm]
deletes a container.

	docker
update [https://docs.docker.com/engine/reference/commandline/update/]
updates a container’s resource limits.

If you want a transient container, docker run --rm will remove the
container after it stops.

If you want to map a directory on the host to a docker container,
docker run -v $HOSTDIR:$DOCKERDIR.

Starting and Stopping

	docker
start [https://docs.docker.com/engine/reference/commandline/start]
starts a container so it is running.

	docker
stop [https://docs.docker.com/engine/reference/commandline/stop] stops a
running container.

	docker
restart [https://docs.docker.com/engine/reference/commandline/restart]
stops and starts a container.

	docker
pause [https://docs.docker.com/engine/reference/commandline/pause/]
pauses a running container, “freezing” it in place.

	docker
attach [https://docs.docker.com/engine/reference/commandline/attach]
will connect to a running container.

Info

	docker ps [https://docs.docker.com/engine/reference/commandline/ps]
shows running containers.

	docker
logs [https://docs.docker.com/engine/reference/commandline/logs] gets
logs from container. (You can use a custom log driver, but logs is
only available for json-file and journald in 1.10)

	docker
inspect [https://docs.docker.com/engine/reference/commandline/inspect]
looks at all the info on a container (including IP address).

	docker
events [https://docs.docker.com/engine/reference/commandline/events]
gets events from container.

	docker
port [https://docs.docker.com/engine/reference/commandline/port] shows
public facing port of container.

	docker top [https://docs.docker.com/engine/reference/commandline/top]
shows running processes in container.

	docker
stats [https://docs.docker.com/engine/reference/commandline/stats] shows
containers’ resource usage statistics.

	docker
diff [https://docs.docker.com/engine/reference/commandline/diff] shows
changed files in the container’s FS.

docker ps -a shows running and stopped containers.

docker stats --all shows a running list of containers.

Executing Commands

	docker
exec [https://docs.docker.com/engine/reference/commandline/exec] to
execute a command in container.

To enter a running container, attach a new shell process to a running
container called foo, use: docker exec -it foo /bin/bash.

Images

	docker
images [https://docs.docker.com/engine/reference/commandline/images]
shows all images.

	docker
build [https://docs.docker.com/engine/reference/commandline/build]
creates image from Dockerfile.

Starting the Knora Stack inside Docker Container

To run Knora locally, we provide docker-compose.yml which can be used to start GraphDB, Sipi,
Webapi running each in its own Docker container.

For GraphDB it is additionally necessary to define two environment variables:

$ export KNORA_GDB_LICENSE # full path to the GraphDB-SE license file, e.g., /Users/name/GDB/GDB.license
$ export KNORA_GDB_HOME # full path to a local folder where GraphDB should store it's data, e.g., /users/name/GDB/home

Per default, GraphDB-SE is started. If GraphDB-Free is needed, because there is no awailable license,
then a third environment variable can be set to something like:

$ export KNORA_GDB_IMAGE=dhlabbasel/graphdb-free:8.3.1

To run the whole stack:

$ docker-compose up

For additional information please see the Docker Compose documentation [https://docs.docker.com/compose/]

Starting Fuseki 3

Locally

Inside the Knora git repository, there is a folder called
triplestores/fuseki containing a script named fuseki-server. All
needed configuration files are in place. To start Fuseki 3, just run
this script:

$./fuseki-server

Inside Docker

We can use the dhlabbasel:fuseki docker image from docker hub:

$ docker run --rm -it -p 3030:3030 dhlabbasel/fuseki

Generating Client API Code

The following route returns a Zip file containing generated client API
code for the specified target:

HTTP GET to http://host/clientapi/TARGET

Currently the only supported TARGET is typescript. For documentation
on defining client APIs, see
@ref:Client API Code Generation Framework.

To check whether the generated TypeScript code compiles, without actually
integrating it into knora-api-js-lib, use:

HTTP GET to http://host/clientapi/typescript?mock=true

This adds mock TypeScript library dependencies.

Starting GraphDB

GraphDB SE

Inside the Knora git repository, there is a folder called
/triplestores/graphdb-se containing the latest supported version of
the GraphDB-SE distribution archive.

Running Locally

Unzip graphdb-se-x.x.x-dist.zip to a place of your choosing and run
the following:

$ cd /to/unziped/location
$./bin/graphdb -Dgraphdb.license.file=/path/to/GRAPHDB_SE.license

Running inside Docker

Important Steps

To be able to successfully run GraphDB inside docker two important steps
need to be done beforhand:

	Install Docker from http://docker.com.

	Copy the GraphDB-SE license file into a folder of you choosing and
name it GRAPHDB_SE.license. We will mount this folder into the
docker container, so that the license can be used by GraphDB
running inside the container.

Usage

$ docker run --rm -it -v /path/to/license/folder:/external -p 7200:7200 dhlabbasel/graphdb

	--rm removes the container as soon as you stop it

	-p forwards the exposed port to your host (or if you use
boot2docker to this IP)

	-it allows interactive mode, so you see if something gets
deployed

After the GraphDB inside the docker container has started, you can find
the GraphDB workbench here: http://localhost:7200

Above, we create and start a transient container (--rm flag). To
create a container that we can stop and start again at a later time,
follow the following steps:

$ docker run --name graphdb -d -t -v /path/to/license/folder:/external -p 7200:7200 dhlabbasel/graphdb

(to see the console output, attach to the container; to detach press Ctrl-c)
$ docker attach graphdb

(to stop the container)
$ docker stop graphdb

(to start the container again)
$ docker start graphdb

(to remove the container; needs to be stopped)
$ docker rm graphdb

	--name give the container a name

	-d run container in background and print container ID

	-t allocate a pseudo TTY, so you see the console output

	-p forwards the exposed port to your host

GraphDB Free

You can run GraphDB Free locally as described for GraphDB SE above, or
you can use Knora’s pre-built GraphDB Free Docker image:

$ docker run --rm -p 7200:7200 dhlabbasel/graphdb-free

Development

@@toc { depth=1 }

@@@ index

	Overview

	Starting Fuseki 3

	Starting GraphDB

	Build and Running

	Build Process

	Setup IntelliJ for development of Knora

	Testing

	Docker Cheat Sheet

	Monitoring Knora

	Profiling Knora

	Starting the Knora Stack inside Docker Container

	Updating Repositories

	Generating Client API Code

@@@

Setup IntelliJ for development of Knora

@@toc

Create an IntelliJ Project for Knora

	Download and install IntelliJ
IDEA [https://www.jetbrains.com/idea/].

	Follow the installation procedure and install the Scala plugin

[image: ../../../../_images/install-scala-plugin.png]screenshot 'Install Scala Plugin'

	Import the root “Knora” directory from the source tree: Import Project -> Choose the option module SBT

[image: ../../../../_images/import-from-sbt.png]screenshot 'import existing SBT project'

	SBT project configuration:
[image: ../../../../_images/sbt-config.png]screenshot 'import SBT configuration'

	IntelliJ’s window after the import is finished:

[image: ../../../../_images/intellij-after-import.png]screenshot 'IntelliJ windows after import'

	make sure that the tab size is set correctly to 4 spaces (so you
can use automatic code reformatting): Preferences -> Code Style -> Scala:

[image: ../../../../_images/setting-tab-space.png]screenshot 'setting tab size'

Twirl

By default, Intellij excludes some folders like the twirl template
files. To include them, go to Project Structure and remove
target/scala-2.1*/twirl from excluded folders. Then Intellij will
correctly resolve the references to the template files.

Use IntelliJ IDEA’s Debugger with Knora

	Create an application configuration:

[image: ../../../../_images/edit-config.png]screenshot 'edit application config'

[image: ../../../../_images/create-app.png]screenshot 'create application configuration'

Fill in the configuration details:

[image: ../../../../_images/app-config-setup.png]screenshot 'change application configuration'

	Click on the debugging symbol to start the application with a debugger attached:

[image: ../../../../_images/debug.png]screenshot 'debug'

	Click on a line-number to add a breakpoint

[image: ../../../../_images/breakpoint.png]screenshot 'set a breakpoint'

Use a Remote Debugger with Intellij

	edit configurations (Run -> Edit Configurations…)

	add a new remote configuration:

[image: ../../../../_images/remote-config.png]screenshot 'remote configuration'

	from the console (in folder webapi), run sbt -J-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005

	start Knora using reStart

	use debugger: choose configuration and click on Debug [configName]

[image: ../../../../_images/use-debugger.png]screenshot 'use debugger'

Profile Knora Using VisualVM in IntelliJ

First, download and install VisualVM [https://visualvm.github.io/].

Then, in IntelliJ, under Preferences -> Plugins, search for the
VisualVM
Launcher [https://plugins.jetbrains.com/plugin/7115-visualvm-launcher],
click on “Search in repositories”, install the plugin, and restart
IntelliJ. IntelliJ’s toolbar should now contain a button with a green
triangle on an orange circle, with the tooltip “Run with VisualVM”:

[image: ../../../../_images/launch-visualvm.png]screenshot 'Run with VisualVM button'

You can use this button to run the class org.knora.webapi.Main and
profile it in VisualVM. The first time you do this, IntelliJ will ask
you for the path to the VisualVM executable. On macOS this is
/Applications/VisualVM.app/Contents/MacOS/visualvm.

When VisualVM starts, it will open a window like this:

[image: ../../../../_images/visualvm-overview.png]screenshot 'VisualVM overview'

To use the profiler, click on the “Sampler” tab, then on the “CPU”
button:

[image: ../../../../_images/visualvm-sampler.png]screenshot 'VisualVM sampler'

Now run some Knora API operations that you’re interested in profiling,
preferably several times to allow the sampler to collect enough data.
Then click on the “Snapshot” button:

[image: ../../../../_images/visualvm-snapshot-button.png]screenshot 'VisualVM snapshot
button'

In the snapshot, you’ll see a list of threads that were profiled:

[image: ../../../../_images/visualvm-snapshot.png]screenshot 'VisualVM snapshot'

You can then browse the call tree for each thread, looking for Knora
method calls, to see the total time spent in each method:

[image: ../../../../_images/visualvm-call-tree.png]screenshot 'VisualVM call tree'

Monitoring Knora

Monitoring is implemented by using the Prometheus / Grafana stack.

Usage:

	Start webapi with the necessary -p option (e.g., from inside sbt:
run -p or reStart -p

	Start the monitoring stack by executing the following line inside
the monitoring
folder:

$ WEBAPIHOST=<YourLocalIP> ADMIN_USER=admin ADMIN_PASSWORD=admin docker-compose up -d

	Head over to localhost:3000, log in using the admin username and
password, and open the “Webapi Akka Actor System” dashboard.

	To shut down the monitoring stack, run the following line inside the
monitoring folder:

$ docker-compose down

Overview

@@toc

Developing for Knora requires a complete local
installation of Knora. The different parts are:

	The cloned Knora [https://github.com/dhlab-basel/Knora] Github
repository

	One of the supplied triplestores in the Knora Github repository
(GraphDB-SE 8 or Fuseki 3).

	Sipi by building from
source [https://github.com/dhlab-basel/Sipi] or using the docker
image [https://hub.docker.com/r/dhlabbasel/sipi/]

Knora Github Repository

$ git clone https://github.com/dhlab-basel/Knora

Triplestore

A number of triplestore implementations are available, including free
software [http://www.gnu.org/philosophy/free-sw.en.html] as well as
proprietary options. Knora is designed to work with any
standards-compliant triplestore. It is primarily tested with Ontotext
GraphDB [http://ontotext.com/products/graphdb/], a high-performance,
proprietary triplestore. We recommend GraphDB Standard Edition, but
GraphDB Free (which is proprietary but available free of charge) also
works.

Knora includes support for Apache Jena [https://jena.apache.org/],
which is free software [http://www.gnu.org/philosophy/free-sw.en.html],
but use of Jena is deprecated, and support for it will probably be
removed in the future.

Built-in support and configuration for other triplestores is planned.

See the chapters on @ref:Starting GraphDB and
@ref:Starting Fuseki for more details.

Sipi

Build Sipi Docker Image

The Sipi docker image needs to be build by hand, as it requires the
Kakadu distribution.

To build the image, and push it to the docker hub, follow the following
steps:

$ git clone https://github.com/dhlab-basel/docker-sipi
(copy the Kakadu distribution ``v7_8-01382N.zip`` to the ``docker-sipi`` directory)
$ docker build -t dhlabbasel/sipi
$ docker run --name sipi --rm -it -p 1024:1024 dhlabbasel/sipi
(Ctrl-c out of terminal will stop and delete container)
$ docker push dhlabbasel/sipi

Pushing the image to the docker hub requires prior authentication with
$ docker login. The user needs to be registered on hub.docker.com.
Also, the user needs to be allowed to push to the dblabbasel
organisation.

Running Sipi

To use the docker image stored locally or on the docker hub repository
type:

$ docker run --name sipi -d -p 1024:1024 dhlabbasel/sipi

This will create and start a docker container with the dhlabbasel/sipi
image in the background. The default behaviour is to start Sipi by
calling the following command:

$ /sipi/local/bin/sipi -config /sipi/config/sipi.knora-test-config.lua

To override this default behaviour, start the container by supplying
another config file:

$ docker run --name sipi \
 -d \
 -p 1024:1024 \
 dhlabbasel/sipi \
 /sipi/local/bin/sipi -config /sipi/config/sipi.config.lua

You can also mount a directory (the local directory in this example),
and use a config file that is outside of the docker container:

$ docker run --name sipi \
 -d \
 -p 1024:1024 \
 -v $PWD:/localdir \
 dhlabbasel/sipi \
 /sipi/local/bin/sipi -config /localdir/sipi.knora-test-config.lua

Redis Server

The Knora-API server uses Redis for caching.

On macOS you can install Redis through Homebrew [https://brew.sh]:

$ brew install redis

If you don’t want to use Redis, you can disable caching in application.conf
via the app.use-redis-cache key, by setting it to false.

Profiling Knora

To run Knora with profiling, we first need to build the application. Please run the following from the top knora folder:

$ sbt webapi/stage

Profiling with YourKit [http://yourkit.com]:

Start webapi from the knora/webapi/target/universal/stage directory with the following command:

$./bin/webapi -J-agentpath:/Applications/YourKit-Java-Profiler-2018.04.app/Contents/Resources/bin/mac/libyjpagent.jnilib -J-Xms1G -J-Xmx1G

Now start the YourKit Profiler and connect to the Main process.

Testing

Prerequisite: Before running any tests, a supported triplestore needs to
be started and initialized through a script inside the “scripts” folder.
For example, when using “GraphDB Free”, the nedded script is
“graphdb-free-init-knora-test-unit.sh”. Please note the occurrence of
“test-unit” in the name of the script.

How to Write Unit Tests

	Inside a test, at the beginning, add the following (change the paths
to the test data as needed):

val rdfDataObjects = List (
 RdfDataObject(path = "_test_data/responders.v1.ValuesResponderV1Spec/incunabula-data.ttl", name = "http://www.knora.org/data/incunabula")
)

The data will be automatically loaded before any tests are executed. These tests should be stored inside
the src/test folder hierarchy.

	Call the test from SBT:

// when using a GraphDB-SE
sbt:knora> webapi / test

// when using a GraphDB-Free
sbt:knora> webapi / GDBFree / test

How to Write Integration Tests

The only difference between Integration and Unit tests is the location
where they are stored and the way how they are called:

	Store tests inside the src/it folder hierarchy.

	Call the tests from SBT: sbt:knore> webapi / it:test

How to Write Performance / Simulation Tests

	Store the performance and simulation tests inside the src/test and
the src/it folder hierarchy.

	To call them, execute either webapi / gatling:test or webapi / gatling-it:test
from inside SBT.

Bellow is an example of an simulation calling the /admin/users
endpoint. The simulation ramps up 1000 users over 5 seconds, all
accessing the /admin/users
endpoint.

@@snipExampleE2ESimSpec.scala { }

Custom SBT Test Configurations

For convenience, there are a number of custom test configurations defined inside WebapiBuild.sbt. These can be used together with the
built-in test tasks like test, testOnly, testQuick.

For use with GraphDB-SE (using test/resources/graphdb-se.conf) running normal tests:

sbt:knora> webapi / test
sbt:knora> webapi / GDBSE / test
sbt:knora> webapi / gdbse:test

For use with GraphDB-SE (using it/resources/graphdb-se.conf) running integration tests:

sbt:knora> webapi / it:test
sbt:knora> webapi / GDBSEIt / test
sbt:knora> webapi / gdbse-it:test

For use with GraphDB-Free (using test/resources/graphdb-free.conf) running normal tests:

sbt:knora> webapi / GDBFree / test
sbt:knora> webapi / gdbfree:test

For use with GraphDB-Free (using it/resources/graphdb-free.conf) running integration tests:

sbt:knora> webapi / GDBFreeIt / test
sbt:knora> webapi / gdbfree-it:test

For use with Fuseki (using test/resources/fuseki.conf) running normal tests:

sbt:knora> webapi / Fuseki / test
sbt:knora> webapi / fuseki:test

For use with Fuseki (using it/resources/fuseki.conf) running integration tests:

sbt:knora> webapi / FusekiIt / test
sbt:knora> webapi / fuseki-it:test

Updating Repositories

As explained in
@ref:Knora Ontology Versions,
the knora-base ontology contains a version string to ensure compatibility
between a repository and a given version of Knora. The same version string
is therefore hard-coded in the Knora source code, in the string constant
org.knora.webapi.KnoraBaseVersion. For new pull requests, the format of this string
is knora-base vN, where N is an integer that is incremented for
each version. Each time a pull request introduces changes that are not compatible
with existing data, the following must happen:

	The knora-base version number must be incremented in knora-base.ttl and
in the string constant org.knora.webapi.KnoraBaseVersion.

	A plugin must be added in the upgrade subproject under org.knora.upgrade.plugins,
and registered in org.knora.upgrade.Main, to transform
existing repositories so that they are compatible with the code changes
introduced in the pull request.

Adding an Upgrade Plugin

An upgrade plugin is a Scala class that extends UpgradePlugin. The name of the plugin
class should refer to the pull request that made the transformation necessary,
using the format UpgradePluginPRNNNN, where NNNN is the number of the pull request.

A plugin’s transform method takes an RDF4J Model (a mutable object representing
the repository) and modifies it as needed. For details on how to do this, see
The RDF Model API [https://rdf4j.eclipse.org/documentation/programming/model/]
in the RDF4J documentation.

The plugin must then be added to the collection pluginsForVersions in
org.knora.upgrade.Main.

Testing Update Plugins

Each plugin should have a unit test that extends UpgradePluginSpec. A typical
test loads a TriG file containing test data into a Model, runs the plugin,
makes an RDF4J SailRepository containing the transformed Model, and uses
SPARQL to check the result.

Design Rationale

We tried and rejected other designs:

	Running SPARQL updates in the triplestore: too slow, and no way to report
progress during the update.

	Downloading the repository and transforming it in Python using
rdflib [https://rdflib.readthedocs.io/en/stable/]: too slow.

	Downloading the repository and transforming it in C++ using
Redland [http://librdf.org]: also too slow.

The Scala implementation is the fastest by far.

The whole repository is uploaded in a single transaction because
GraphDB’s consistency checker can enforce dependencies between named
graphs.

The SALSAH 1 GUI

Running the automated tests

In order to run the tests, the Selenium driver for Chrome has to be
installed.

It is architecture-dependent, so go to the salsah1/lib/chromedriver
directory and unzip the distribution that matches your architecture, or
download it from
here [https://sites.google.com/a/chromium.org/chromedriver/downloads]
and install it in this directory.

Then, launch the services as described above; the triple store with the
test data, the Knora server with reStart -r (allowReloadOverHTTP-flag) from SBT (from KNORA_PROJECT_DIRECTORY/webapi), Sipi
with the test configuration (--config=config/sipi.knora-docker-test-config.lua) and SALSAH 1 where you can run the tests in
the same SBT session:

$ cd KNORA_PROJECT_DIRECTORY
$ sbt
> salsah1 / compile
> salsah1 / reStart
> salsah1 / test

Note: please be patient as SALSAH 1 can take up to one minute (end of a
time-out) before reporting some errors.

The Sipi Media Server

Sipi [http://www.sipi.io/] is a high-performance media server written in C++,
for serving and converting binary media files such as images and video. Sipi can
efficiently convert between many different formats on demand, preserving
embedded metadata, and implements the International Image
Interoperability Framework (IIIF) [http://iiif.io/]. Knora is designed
to use Sipi for converting and serving media files.

@@toc { depth=1 }

@@@ index

	Setting Up Sipi for Knora

	Interaction Between Sipi and Knora

@@@

Setting Up Sipi for Knora

Setup and Execution

In order to serve files to the client application like the Salsah GUI,
Sipi must be set up and running. Sipi can be downloaded from its own
GitHub repository: https://github.com/dhlab-basel/Sipi (which requires
building from source), or the published docker image [https://hub.docker.com/r/dhlabbasel/sipi/].
can be used. To start Sipi, run the following command from inside the sipi/
folder:

$ export DOCKERHOST=LOCAL_IP_ADDRESS
$ docker image rm --force dhlabbasel/sipi:develop // deletes cached image and needs only to be used when newer image is available on dockerhub
$ docker run --rm -it --add-host webapihost:$DOCKERHOST -v $PWD/config:/sipi/config -v $PWD/scripts:/sipi/scripts -v /tmp:/tmp -v $HOME:$HOME -p 1024:1024 dhlabbasel/sipi:develop --config=/sipi/config/sipi.knora-docker-config.lua

where LOCAL_IP_ADDRESS is the IP of the host running the Knora.

--config=/sipi/config/sipi.knora-docker-config.lua (or --config=/sipi/config/sipi.knora-docker-it-config.lua for
using sipi for integration testing). Please see sipi.knora-docker-config.lua for the settings like URL, port number
etc. These settings need to be set accordingly in Knora’s application.conf. If you use the default settings both in
Sipi and Knora, there is no need to change these settings.

Whenever a file is requested from Sipi (e.g. a browser trying to
dereference an image link served by Knora), a preflight function is
called. This function is defined in sipi.init-knora.lua present in the
Sipi root directory. It takes three parameters: prefix, identifier
(the name of the requested file), and cookie. File links created by
Knora use the prefix knora, e.g.
http://localhost:1024/knora/incunabula_0000000002.jp2/full/2613,3505/0/default.jpg.

Given these information, Sipi asks Knora about the current’s users
permissions on the given file. The cookie contains the current user’s
Knora session id, so Knora can match Sipi’s request with a given user
profile and determine the permissions this user has on the file. If the
Knora response grants sufficient permissions, the file is served in the
requested quality. If the suer has preview rights, Sipi serves a reduced
quality or integrates a watermark. If the user has no permissions, Sipi
refuses to serve the file. However, all of this behaviour is defined in
the preflight function in Sipi and not controlled by Knora. Knora only
provides the permission code.

See @ref:Sharing the Session ID with Sipi for more
information about sharing the session id.

Using Sipi in Test Mode

If you just want to test Sipi with Knora without serving the actual
files (e.g. when executing browser tests), you can simply start Sipi
like this:

$ export DOCKERHOST=LOCAL_IP_ADDRESS
$ docker image rm --force dhlabbasel/sipi:develop // deletes cached image and needs only to be used when newer image is available on dockerhub
$ docker run --rm -it --add-host webapihost:$DOCKERHOST -v $PWD/config:/sipi/config -v $PWD/scripts:/sipi/scripts -v /tmp:/tmp -v $HOME:$HOME -p 1024:1024 dhlabbasel/sipi:develop --config=/sipi/config/sipi.knora-docker-test-config.lua

Then always the same test file will be served which is included in Sipi. In test mode, Sipi will
not aks Knora about the user’s permission on the requested file.

Using Sipi in production behind a proxy

For SIPI to work with Salsah1 (non-angular) GUI, we need to define an additional set of
environment variables if we want to run SIPI behind a proxy:

	SIPI_EXTERNAL_PROTOCOL=https

	SIPI_EXTERNAL_HOSTNAME=iiif.example.org

	SIPI_EXTERNAL_PORT=443

These variables are only used by make_thumbnail.lua:

@@snipmake_thumbnail.lua { #snip_marker }

Additional Sipi Environment Variables

Additionaly, these environment variables can be used to further configure sipi:

	SIPI_WEBAPI_HOSTNAME=localhost: overrides knora_path in Sipi’s config

	SIPI_WEBAPI_PORT=3333: overrides knora_port in Sipi’s config

These variables need to be explicitly used like in sipi.ini-knora.lua:

@@snipsipi.init-knora.lua { #snip_marker }

Interaction Between Sipi and Knora

TODO: reorganise this to make clear that it describes Knora API v1.

General Remarks

Knora and Sipi (Simple Image Presentation Interface) are two
complementary software projects. Whereas Knora deals with data that
is written to and read from a triplestore (metadata and annotations),
Sipi takes care of storing, converting and serving image files as well
as other types of files such as audio, video, or documents (binary files
it just stores and serves).

Knora and Sipi stick to a clear division of responsibility regarding
files: Knora knows about the names of files that are attached to
resources as well as some metadata and is capable of creating the URLs
for the client to request them from Sipi, but the whole handling of
files (storing, naming, organization of the internal directory
structure, format conversions, and serving) is taken care of by Sipi.

Adding Files to Knora: Using the GUI or directly the API

To create a resource with a digital representation attached to, either
the browser-based GUI (SALSAH) can be used or this can be done by
directly addressing the API. (Of course, also the GUI uses the API.
But the user does not need to know about it.) The same applies for
changing an existing digital representation for a resource. Subsequently, the first
case will be called the GUI case and the second the non-GUI case.

GUI Case

In this case, the user may choose a file to upload using his
web-browser. The file is directly sent to Sipi (route:
create_thumbnail) to calculate a thumbnail hosted by Sipi which then
gets displayed to the user in the browser. Sipi copies the original file
into a temporary directory and keeps it there (for later processing in
another request). In its answer (JSON), Sipi returns:

	preview_path: the path to the thumbnail (accessible to a
web-browser)

	filename: the name of the temporarily stored original file
(managed by Sipi)

	original_mimetype: mime type of the original file

	original_filename: the original name of the file submitted by
the client

Once the user finally wants to attach the file to a resource, the
request is sent to Knora’s API providing all the required parameters to
create the resource along with additional information about the file to
be attached. However, the file itself is not submitted to the Knora
Api, but its filename returned by Sipi (from the create_thumbnail
response).

Create a new Resource with a Digital Representation

The POST request is handled in ResourcesRouteV1.scala and parsed to a
CreateResourceApiRequestV1. Information about the file is sent
separately from the other resource parameters (properties) under the
name file:

	originalFilename: original name of the file (returned by Sipi
when creating the thumbnail)

	originalMimeType: original mime type of the file (returned by
Sipi when creating the thumbnail)

	filename: name of the temporarily stored original file (returned
by Sipi when creating the thumbnail)

In the route, a SipiResponderConversionFileRequestV1 is created
representing the information about the file to be attached to the new
resource. Along with the other parameters, it is sent to the resources
responder.

See @ref:Further Handling of the GUI and the non GUI-case in the Resources Responder for
details of how the resources responder then handles the request.

Change the Digital Representation of a Resource

The request is taken care of in ValuesRouteV1.scala. The PUT request
is handled in path v1/filevalue/{resIri} which receives the resource
Iri as a part of the URL: The submitted file will update the existing
file values of the given resource.

The file parameters are submitted as json and are parsed into a
ChangeFileValueApiRequestV1. To represent the conversion request for
the Sipi responder, a SipiResponderConversionFileRequestV1 is created.
A ChangeFileValueRequestV1 containing the resource Iri and the message
for Sipi is then created and sent to the values responder.

See @ref:Further Handling of the GUI and the non GUI-case in the Values Responder
for details of how the values responder then handles the request.

Non-GUI case

In this case, the API receives an HTTP multipart request containing the
binary data.

Create a new Resource with a Digital Representation

The request is handled in ResourcesRouteV1.scala. The multipart POST
request consists of two named body parts: json containing the resource
parameters (properties) and file containing the binary data as well as
the file name and its mime type. Using Python’s request
module [http://docs.python-requests.org/en/master/user/quickstart/#post-a-multipart-encoded-file],
a request could look like this:

import requests, json

params = {...} // resource parameters
files = {'file': (filename, open(path + filename, 'rb'), mimetype)} // filename, binary data, and mime type

r = requests.post(knora_url + '/resources',
 data={'json': json.dumps(params)},
 files=files,
 headers=None)

The binary data is saved to a temporary location by Knora. The route
then creates a SipiResponderConversionPathRequestV1 representing the
information about the file (i.e. the temporary path to the file) to be
attached to the new resource. Along with the other parameters, it is
sent to the resources responder.

See @ref:Further Handling of the GUI and the non GUI-case in the Resources Responder for
details of how the resources responder then handles the request.

Change the Digital Representation of a Resource

The request is taken care of in ValuesRouteV1.scala. The multipart PUT
request is handled in path v1/filevalue/{resIri} which receives the
resource Iri as a part of the URL: The submitted file will update the
existing file values of the given resource.

For the request, no json parameters are required. So its body just
consists of the binary data
(see @ref:Create a new Resource with a Digital Representation).
The values route stores the submitted
binaries as a temporary file and creates a
SipiResponderConversionPathRequestV1. A ChangeFileValueRequestV1
containing the resource Iri and the message for Sipi is then created and
sent to the values responder.

See @ref:Further Handling of the GUI and the non GUI-case in the Values Responder for details
of how the values responder then handles the request.

Further Handling of the GUI and the Non-GUI case in the Resources Responder

Once a SipiResponderConversionFileRequestV1 (GUI case) or a
SipiResponderConversionPathRequestV1 (non-GUI case) has been created
and passed to the resources responder, the GUI and the non-GUI case can
be handled in a very similar way. This is why they are both
implementations of the trait SipiResponderConversionRequestV1.

The resource responder calls the ontology responder to check if all
required properties were submitted for the given resource type. Also it
is checked if the given resource type may have a digital representation.
The resources responder then sends a message to Sipi responder that does
a request to the Sipi server. Depending on the type of the message
(SipiResponderConversionFileRequestV1 or
SipiResponderConversionPathRequestV1), a different Sipi route is
called. In the first case (GUI case), the file is already managed by
Sipi and only the filename has to be indicated. In the latter case, Sipi
is told about the location where Knora has saved the binary data to.

To make this handling easy for Knora, both messages have their own
implementation for creating the parameters for Sipi (declared in the
trait as toFormData). If Knora deals with a
SipiResponderConversionPathRequestV1, it has to delete the temporary
file after it has been processed by SIPI. Here, we assume that we deal
with an image.

For both cases, Sipi returns the same answer containing the following
information:

	file_type: the type of the file that has been handled by Sipi
(image | video | audio | text | binary)

	mimetype_full and mimetype_thumb: mime types of the full image
representation and the thumbnail

	original_mimetype: the mime type of the original file

	original_filename: the name of the original file

	nx_full, ny_full, nx_thumb, and ny_thumb: the x and y
dimensions of both the full image and the thumbnail

	filename_full and filename_full: the names of the full image
and the thumbnail (needed to request the images from Sipi)

The file_type is important because representations for resources are
restricted to media types: image, audio, video or a generic binary file.
If a resource type requires an image representations (subclass of
StillImageRepresentation), the file_type has to be an image.
Otherwise, the ontology’s restrictions would be violated. Because of
this requirement, there is a construct fileType2FileValueProperty
mapping file types to file value properties. Also all the possible file
types are defined in enumeration.

Depending on the given file type, Sipi responder can create the apt
message (here: StillImageFileValueV1) to save the data to the
triplestore.

Further Handling of the GUI and the non-GUI case in the Values Responder

In the values responder, ChangeFileValueRequestV1 is passed to the
method changeFileValueV1. Unlike ordinary value change requests, the
Iris of the value objects to be updated are not known yet. Because of
this, all the existing file values of the given resource Iri have to be
queried first. Also their quality levels are queried because in case of
a StillImageFileValue, we have to deal with a file value for the
thumbnail and another one for the full quality representation. When
these two file values are being updated, the quality levels have to be
considered for the sake of consistency (otherwise a full quality value’s
knora-base:previous-value may point to a thumbnail file value).

With the file values being returned, we actually know about the current
Iris of the value objects. Now the Sipi responder is called to handle
the file conversion request (see @ref:Further Handling of the GUI and the non GUI-case in the Resources Responder).
After that, it is checked that the file_type returned by Sipi responder
corresponds to the property type of the existing file values. For
example, if the file_type is an image, the property pointing to the
current file values must be a hasStillImageFileValue. Otherwise, the
user submitted a non image file that has to be rejected.

Depending on the file_type, messages of type ChangeValueRequestV1
can be created. For each existing file value, such a message is
instantiated containing the current value Iri and the new value to be
created (returned by the sipi responder). These messages are passed to
changeValueV1 because with the described handling done in
changeFileValueV1, the file values can be changed like any other value
type.

In case of success, a ChangeFileValueResponseV1 is sent back to the
client, containing a list of the single ChangeValueResponseV1.

Retrieving Files from Sipi

URL creation

Binary representions of Knora locations are served by Sipi. For each
file value, Knora creates several locations representing different
quality levels:

"resinfo": {
 "locations": [
 {
 "duration": ​0,
 "nx": ​95,
 "path": "http://sipiserver:port/knora/incunabula_0000000002.jpg/full/full/0/default.jpg",
 "ny": ​128,
 "fps": ​0,
 "format_name": "JPEG",
 "origname": "ad+s167_druck1=0001.tif",
 "protocol": "file"
 },
 {
 "duration": ​0,
 "nx": ​82,
 "path": "http://sipiserver:port/knora/incunabula_0000000002.jp2/full/82,110/0/default.jpg",
 "ny": ​110,
 "fps": ​0,
 "format_name": "JPEG2000",
 "origname": "ad+s167_druck1=0001.tif",
 "protocol": "file"
 },
 {
 "duration": ​0,
 "nx": ​163,
 "path": "http://sipiserver:port/knora/incunabula_0000000002.jp2/full/163,219/0/default.jpg",
 "ny": ​219,
 "fps": ​0,
 "format_name": "JPEG2000",
 "origname": "ad+s167_druck1=0001.tif",
 "protocol": "file"
 }
 ...
],
"restype_label": "Seite",
"resclass_has_location": true,

Each of these paths has to be handled by the browser by making a call to
Sipi, obtaining the binary representation in the desired quality. To
deal with different image quality levels, Sipi implements the IIIF
standard [http://iiif.io/api/image/2.0/]. The different quality level
paths are created by Knora in ValueUtilV1.

Whenever Sipi serves a binary representation of a Knora file value
(indicated by using the prefix knora in the path), it has to make a
request to Knora’s Sipi responder to get the user’s permissions on the
requested file. Sipi’s request to Knora contains a cookie with the Knora
session id the user has obtained when logging in to Knora: As a response
to a successful login, Knora returns the user’s session id and this id
is automatically sent to Sipi by the browser, setting a second cookie
for the communication with Sipi. The reason the Knora session id is set
in two cookies, is the fact that cookies can not be shared among
different domains. Since Knora and Sipi are likely to be running under
different domains, this solution offers the necessary flexibility.

Authentication of users with Sipi

Whenever a file is requested, Sipi asks Knora about the current user’s permissions on the given file.
This is achieved by sharing the Knora session cookie with Sipi. When the user logs in to Knora using his
browser (using either V1 or V2 authentication route), a session cookie containing a JWT token representing
the user is stored in the user’s client. This session cookie is then read by Sipi and used to query for
the user’s image permissions.

For the session cookie to be sent to Sipi, both the Knora API and Sipi endpoints need to
be under the same domain, e.g., api.example.com and iiif.example.com.

Lucene

@@toc { depth=2 }

@@@ index

	Query Parser Syntax

@@@

The Lucene full-text index provided by the triplestore is used to perform full-text searches in Knora.
The exact behavior can be different depending on the triplestore, e.g., GraphDB or Fuseki.

Lucene Query Parser Syntax

Full-text searches in Knora are based on Lucene.
Therefore, full-text searches support the
Lucene Query Parser Syntax [https://lucene.apache.org/core/7_7_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html].

A full-text search consists of a single word in the simplest case, but could also be composed of several words combined with
Boolean operators [https://lucene.apache.org/core/7_7_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#Boolean_operators].
By default, Lucene combines two or more terms separated by space with a logical OR.

For examples, see
Lucene Query Parser Syntax [https://lucene.apache.org/core/7_7_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html].

 _images/launch-visualvm.png
S
vain~| b ¥ ¥ @ @

_images/remote-config.png
Run/Debug Configurations

+ - EBY | Name: remote Share Single instance only
v = Remote

ConfiguratonLogs

> % Defaults

Command line arguments for running remote JYVM 5-8 v
—agentlib: jdwp=transport=dt_socket, server=y, suspend=n, address=5005 B
Settings

Transport: *) Socket

Debugger mode: (e) Attach Listen

Host: localhost Port: | 5005

Search sources using module's classpath: g webapi v

v Before launch: Activate tool window

There are no tasks to run before launch

Show this page |v| Activate tool window

? Cancel OK

_images/install-scala-plugin.png
Customize IntelliJ IDEA

Ul Themes — Keymaps — Launcher Script = Default plugins = Featured plugins

Download featured plugins

We have a few plugins in our repository that most users like to download. Perhaps, you need them too?

Scala Live Edit Tool
Plugin for Scala language support Provides live edit
HTML/CSS/JavaScript
32% ‘ Install
X Cancel

NodeJS Angular

Node.js integration Angular 1&2 support
Install Install

New plugins can also be downloaded in Preferences | Plugins

Skip Remaining and Set Defaults Back to Default plugins

IdeaVim

Emulates Vim editor

A Recommended only if you are
familiar with Vim.

Install and Enable

Start using IntelliJ IDEA

_images/intellij-after-import.png
[knora] A | Add Configuration.

§ [Project v
£ » WgKnora [knora] ~/Soft/Code/github/Knol
> it External Libraries

™ P Scratches and Consoles

opeio , oseqeeq

s @

Search Everywhere Double ¢

woren 3

Go to File {+80
Recent Files $8E

Navigation Bar 821

wonepiien weog &

Drop files here to open

1004

Buili: Sync & -
& ¥ Knora: syncfinished at 2019-03-27 17:13 1m17 s 445 ms
+ dump project structure from sbt
+ import to InteliJ project model

na wy %

L}
»

2 Favorites

7: Structure

1 9 VersionControl B Terminol [g sotshell A\ Buld [JavaEnterprise @ Spring 1= 6:T0DO @ EventLog
Dockerfile dtection: You may setup Docker deployment run configuraion for the folowing fles): salsah2/Dockarfile/ Di... (2 minutes ago) Git: wip/documentation-update ¢ W >

_images/use-debugger.png
14
b

(9]

1 @remote v

L3

_images/visualvm-call-tree.png
v & Local

¥ Visualvm
48 idea (pid 72032)

» & com.intellij.rt.execution.applicatior
e
& org jetbrains.jps.cmdline.Launcher
& org.jetbrains.plugins.scala.nailgun.

& Remote

(55 VM Coredumps

(&) snapshots

‘Com intell.rt.execution application AppMain (pid 72182)
[d Overview [l Monitor [=] Threads £ Sampler [snapshot] 12:03:35 PM ©

C com.intellij.rt.execution.application.AppMain (pid 72182)
Profiler Snapshot

=] View: | () Methods Q& &

Call Tree - Method Total Time (%]~ Total Time
onfunsmaps$1 0 97.4ms (496

onfunsmap$1 0
2sponders v1 ResourcesResponderV1§SLambda$ 1466.309930310.apply 0
si.responders.v1 ResourcesResponderV1.$anonfuns getContextResponseV1$17
ion.immutable List foldLeft (
ection.LinearSeqOptimized.foldLefts
ollection.LinearSeqOptimized.foldLeft (
_knora.webapi.responders.v1 ResourcesResponderV1s SLambda$ 1468.1759287296.apply ()
org.knora.webapi.responders.v1.ResourcesResponderV1.$anonfun$getContextResponse [N
¥ org.knora.webapi.res ponders.v1.ResourcesResponderV1.createSourceObjectFromResu [N
v % org.knora.webapi.util.PermissionUtiIV1S.getUserPermissionV1
v M org.knora.webapi.util.PermissionUtilV1S.parsePermissions (
v % scala.collection. AbstractTraversable.map (
v % scala.collection. TraversableLike.maps$ (
v % scala.collection. TraversableLike.map (
v % scala.collection.mutable WrappedArray.foreach (
v % scala.collection.IndexedSeqOptimized.foreachs
v % scala.collection.IndexedSeqOptimized foreach (
v % scala.collection. TraversableLikeS SLambda$ 11.600746945.a
v % scala.collection. TraversableLike.$anonfuns map$ 1 0
v M org.knora.webapi.util.PermissionUtilV1$ $ SLambdas 1 [N
v M org.knora.webapi.util.PermissionUtiV1S.Sanonfui
v % scala.collection.immutable StringOps.split
v ¥ scala.collection.immutable.StringLike.splits [N
v ¥ scala.collection.immutable.StringLike.sp [N
@ javalang.String.split 0 97.4ms (496

T Method Name Filter (Contains)

ElHot Spots [z Combined @ Info

Total Time (CPU)
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms

_images/sbt-config.png
Import Project

sbt project: | ~/Soft/Code/github/Knora

Download V| Library sources] sbt sources
Use sbt shell:] for imports [for builds
VI Allow overriding sbt version

Project JOK: | P18

Project format: | .idea (directory based)

» Global sbt settings

Previous

_images/setting-tab-space.png
| Preferences

Q Editor > Code Style > Scala

» Appearance & Behavior
Scheme: | Default (1) | v Manage...
Keymap Set from...
v Editor Tabs and Indents Spaces Wrapping and Braces Blank Lines ScalaDoc Imports Multi-line strings Type Annotations vE2
» General class A {
» Colors & Fonts Use tab character def foo[Al(): Int = 42
| v Code Style fool[Int]()

HOCON Tab size: 4

Java Continuation indent: 4
ActionScript Keep indents on empty lines

CFML l
CoffeeScript

CSs

Gherkin

Groovy

GSP

HAML

HTML

JavaScript

JSON

JSP

JSPX

Kotlin

Less

Properties

Sass

? Cancel OK

_images/visualvm-overview.png
v 5] Local

& Visualvm
48 idea (pid 72032)
& com.intellj.rt.execution.applicatior
A T e
& org jetbrains.jps.cmdline.Launcher
& org jetbrains.plugins.scala.nailgun |

& Remote

5 VM Coredumps.

Snapshots

VisualVM 1.3.9

ol executian PR Appan (73 72182) £
EC [Monitor [Threads

C com.intellij.rt.execution.application.AppMain (pid 72182)
Overview

: localhost

intellij.rt.execution.application. AppMain
Arguments: org knora.webapi.Main

JVM: Java HotSpot(TM) 64-Bit Server VM (25.31-b07, mixed mode)

Java: version 1.8.0_31, vendor Oracle Corporation

Java Home: /Library/Java/JavaVirtualMachines /jdk1.8.0_31.jdk/Contents/Home/jre
VM Flags: <none>

Heap dump on OOME: disabled

Saved data /| [JvM arguments | system properties

£ Sampler

Saved data

Details

Thread Dumps: 0 -Dvisualvm.id=1067644953436636

Heap Dumps: 0 -Xms2048M
Profiler Snapshots: 0 -Xmx2048M

-Xss6M

-Dvisualvm.id=1067607990572842
-Didealauncher.port=7532

-Didealauncher.bin.path=/Applications Intelli) IDEA CE.app/Contents /bin

-Dfile.encoding=UTF-8

_images/visualvm-sampler.png
VisualVM 1.3.9

com.ntelli.rt.execution.application AppMain (pid 72182) &3

| [overview [Monitor = Threads

3B 1dea (pid 72032) C com.intellij.rt.execution.application.AppMain (pid 72182)

& com.intellj.rt.execution.applicatior Sampler (3 settings

A T e

& org jetbrains.jps.cmdline.Launcher

& org jetbrains.plugins.scala.nailgun |
& Remore Status: sampling inactive
5 VM Coredumps.
(& Snapshots

sample: | ©cru | (@wemony| Wsio

Summary

CPU sampling:
Available. Press the 'CPU' button to start collecting performance data.

Memory sampling:
Available. Press the 'Memory’ button to start collecting memory data.

_images/visualvm-snapshot-button.png
VisualVM 1.3.9

‘com intell.rt.execution application AppMain (pid 72182) €
v & Local [8 Overview [Monitor =] Threads
(] visualvm
3B 1dea (pid 72032) C com.intellij.rt.execution.application.AppMain (pid 72182)
& com.intellj.rt.execution.applicatior
A T e
& org jetbrains.jps.cmdline.Launcher
& org jetbrains.plugins.scala.nailgun |
& Remote Status: CPU sampling in progress
5 VM Coredumps.
& snapshors CPU samples | Thread CPU Time
@] @ [Esnapshor Thread Dump
Hot Spots - Method Self Time (5] ~ Self Time Self Time (CPU) Total Time Total Time (CPU) @
com.intellj.rt.execution.application.AppMain$ L.run. 0.000 ms. 0.000 ms. 0.000 ms.
akka.actorLightArrayRevolverScheduler$ Sanon$4.ru 0.000 ms. 0.000 ms. 0.000 ms.
akka.actor LightArrayRevolverScheduler$ SanonS4.ne 0.000 ms. 0.000 ms. 0.000 ms.
akka.actor LightArrayRevolverScheduler.waitNanos 0.000 ms, 0.000 ms, 0.000 ms,
0.000 ms, 0.000 ms,
0.000 ms, 0.000 ms,
0.000 ms, 0.000 ms,
0.000 ms, 0.000 ms,
0.000 ms, 0.000 ms,
0.000 ms, 0.000 ms,

Sampler Settings

sample: | ©cru | | @wemony| | Eswop

akka.dispatch. Taskinvocation.run 0.000 ms.
akka.util.SerializedSuspendableExecutionContext.rui 0.000 ms.
akka.util SerializedSuspendableExecutionContext.rui 0.000 ms.
akka.io.SelectionHandlerSChannelRegistrylmpls Sano 0.000 ms.
akka.io.SelectionHandlerChannelRegistrylmplSTask. 0.000 ms.
akka.io.SelectionHandlerSChannelRegistrylmpls Sano 0.000 ms.

TR Method Name Filter (Contains)

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment-bright.png

_images/visualvm-snapshot.png
v & Local

& Visualvm
48 idea (pid 72032)

» & com.intellij.rt.execution.applicatior
A T e
& org jetbrains.jps.cmdline.Launcher
& org jetbrains.plugins.scala.nailgun |

& Remote

5 VM Coredumps.

Snapshots

VisualVM 1.3.9

com.ntelli.rt.execution.application AppMain (pid 72182) &3

[Overview b Monitor = Threads 43 sampler | iSnapshot 12:0335 PV

C com.intellij.rt.execution.application.AppMain (pid 72182)

Profiler Snapshot

View: | (7 Methods Q| [&

Call Tree - Method
&3 Monitor Ctrl-Break

=3 webapi-

5 webap
= webap
5 webap
= webap
= webap
3 webap
= webap
= webap

scheduler-1
akka.io.pinned-dispatcher-26
akka.actor.default-dispatcher-23
akka.actor.default-dispatcher-6
akka.actor.default-dispatcher-27
akka.actor.default-dispatcher-29
akka.actor.default-dispatcher-35
akka.actor.default-dispatcher-20
akka.actor.default-dispatcher-4

TR Method Name Filter (Contains)

Total Time [%] v Total Time
I 490,020 ms
I 490,020 ms
I 490,020 ms
1,905 ms

1,903 ms

1712 ms

198 ms

196 ms

194 ms

87.1ms

[Combined @ Info

Total Time (CPU)

0.000 ms.
0.000 ms.
0.000 ms.
1,905 ms
1,903 ms
1712 ms
198 ms
196 ms
194 ms
87.1ms

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_images/design-diagram.png
Akka

akka.http
routing functions
|
KnoraExceptionHandler
as
ResponderManager
o foara o
ResourcesRespondenv2 SercrResponen2

ask

ask ask

StoreManager

=

o0l of
HitpTriplestoreConnectors.

HTTP

Triplestore

_images/edit-config.png
Ciick the + button to create a new configuration based on templates

README.md
4 RELEASING.md
> 1l External Libraries
Pp Scratches and Consoles
Build: Sync

& v Knora : sync finished at 2019-03-2717:13
+ dump project structure from sbt
+ import to InteliJ project model

L}

» Configurations available in Run Dashboard
.
7] Confirm rerun with process termination

Temporary configurations fimit: |5

I 9:Version Control B Terminal [sbtshell & Bui

Dockerfile detection: You may setup Docker deployment run configuration for the following file(s): salsah2/Dockerfile / Di

(2 minutes ago) Git: wip/documentation-update 5

_images/create-app.png
(0006 RunDebugConfigurations |
+ ¥
Add New Configuration 3 the+ button to create a new configuration based on default settings
¥ Ant Target
= Applet
@ Arquillian JUnit
@® Arquillian TestNG
@ Chromium Remote
[Compound
& Cucumber java
D Firefox Remote
(< Gradle
& Griffon
Grunt.js
¥ Gulp.js
] JAR Application
JavaScript Debug
<] JUnit
K Kotlin
K Kotlin (JavaScript - experimental)
K Kotlin script
£+ Maven

¥/ Confirm rerun with process termination

Temporary configurations limit: | 5

rd Cancel OK

_images/debug.png
Project 2 | & — @ Serverversionscela * | L MutabieTestriscola » | %) StartupUtis.scala 4 (@ latform.class
© ApistatusCodesV1 requestContext a [[RequestContext]
© ApistatusCodesV2 systes
© CORSSupport
© ServerVersion
messages def doLoginV(requestContext: RequestContext) (implicit system: ActorSysten, respondertanage:
responders
routing

admin val credentials: Option[KnoraCredentialsV2] = extractCredentialsV2(requestContext)

vi .
a for {
A2 userADM <- getUserADHThroughCredentialsV2(credentials)
. Authenticator userProfile = userADM.asUserProfilevi
 HealthRoute
2 KnoraRoute
 RejectingRoute
© RouteUtiIADM httpResponse = =
© RouteUtiv1 headers = List(headers P THEN _COOKIE
© RouteUtiV2 status = StatusCodes.0K,

2 entity €
> SwaggerApiDocsRo ContentTypes. ‘applicat

»> Bustore Jsobiect(
> b twirl

¥ 1:Project

oseqereq

val setflings = Settings(systen)

opeio

s @

cookieDomain = Some(settings. cookieDonain)
sessionToken = JWTHelper. createToken(userProfile. userData. user_id.get, settings.jwt<

woren 3

wonepien weog &

doLoginV1
Debug: webapi

1004

Debugger BN Console +*

12019-03-27 18:27:39,918] INFO - ApplicationStateActor — appStateChanged CachesReady
[2019-03-27 18:27:39,918] INFO - ApplicationStateActor - appStateChanged LoadingOntologie:
[2019-03-27 18:27:41,110] INFO - ApplicationStateActor - appStateChanged : OntologiesReady
[2019-03-27 18:27:41,111] INFO - ApplicationStateActor - appStateChanged : Runnin
[2019-03-27 18:27:41,111] INFO - ApplicationStateActor —

ping v %

Knora API Server started at

2 Favorites

DB-Name: knora-test
DB-Type: graphdb-se
DB Server: localhost, DB Port: 7200

7: Structure

I 9:Version Control B Terminal [3 sbtshell & Buld [JavaEnterprise @ Spring %, 5: Debug T000 2 Event Log
Al fils are up-to-date (yesterday 18:27) 39chars 7016 LF ¢ UTF-8 + 4spaces * _Git:wip/documentation-update ¢ 5

_images/import-from-sbt.png
e 0 Import Project

_images/app-config-setup.png
Run/Debug Configurations

-BF Name: | webapi Share [] Allow parallel run
v 5 Application

Slwebapi Configuration
> f Templates

Main class: org.knora.webapi.Main

VM options:
Program arguments:

Working directory: IUsersfliaouen/Soft/Code/github/Knora
Environment variables

Redirect input from

Use classpath of module:

Include dependencies with "Provided" scope
JRE Default (1.8 - SDK of 'webapi' m
Shorten command line: | user-local default: none - java [options] classname

Enable capturing form snapshots

~ Before launch: Build, Activate tool window
Build
+

Show this page (¥ Activate tool window

_images/breakpoint.png
src) B main) B scala) EM org) BN knora) BN webapi) BN routing) i Authenticator.scala [5] webapi v

= Project v I & — O SererVersionscala « 2 MutableTestriscala « %) StartupUtis scala (5 Platform.class % application.conf
ApiStatusCodesV1 requestContext a [[RequestContext
ApiStatusCodesV2 systen
CORSSupport
ServerVersion
» Iumessages (requestContext: RequestContext) (system: ActorSysten, respondertanager
> Eu responders
v B routing
> Emadmin credentials: Option[KnoraCredentialsV2] = extractCredentialsV2(requestContext)
> vt
> V2 4
userADN <- getUserADNThroughCredentialsV2(credentials)
i Authenticator userProfile = userADM.asUserProfilevl
HealthRoute

KnoraRoute cookieDomain = Some(settings. cookieDonain)
sessionToken = JWTHelper. createToken(userProfile.userData.user_id.get, settings

oseqieq

setflings = Settings(systen)

wse opuo R

woren 3

RejectingRoute
RouteUtilADM httpResponse = HttpResponse(
RouteUtilV1 headers ist(headers. "Set—Cookie" (HttpCookie(KNORA_AUTHENTICATION_COOKIE NAME
status = StatusCodes. 0K,
Z°“‘e““‘;’2D . entity = HetpEntity(
@ SwaggerApiDocsRo ContentTypes. ‘application/json
» Iu store JsObject(
> Em twirl

wonepien weog &

doLoginV1
Debug: (5] webapi

1004

Debugger BN Console +*

12019-03-27 18:27:39,918] ApplicationstateActor — appStateChanged CachesReady
[2019-03-27 18:27:39,918] ApplicationstateActor — appStateChanged LoadingOntologies
[2019-03-27 18:27:41,110] ApplicationstateActor — appStateChanged : OntologiesReady
[2019-03-27 18:27:41,111] ApplicationstateActor — appStateChanged Running
[2019-03-27 18:27:41,111] ApplicationstateActor

ping v %

2 Favorites

Knora API Server started at http://0.0.0.0:3333

DB-Name: knora-test
DB-Type: graphdb-se
DB Server: localhost, DB Port: 7200

7: Structure
B X

I 9:Version Control B Terminal [3 sbtshell & Buld [JavaEnterprise @ Spring %, 5: Debug To00 @ Event Log
[0 Allfiles are up-to-date (yesterday 18:27) 39chars 7016 LF ¢ UTF-8 + 4spaces * _Git:wip/documentation-update ¢ 5

