

 Navigation

 	
 index

 	
 next |

 	Knora 0.1 documentation

	Introduction
	What Is Knora?

	An Example Project: Incunabula

	The Knora Ontologies
	The Knora Base Ontology

	The Knora API Server
	Deploying the Knora API Server

	Knora API Server Design Documentation

	Developing the Knora API Server

	Using API V1

	SALSAH
	Developing SALSAH

	SALSAH Design Documentation

	Sipi
	Setup Sipi for Knora

	Interaction Between Sipi and Knora

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

Introduction

	What Is Knora?

	An Example Project: Incunabula
	The Incunabula Ontology

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	Introduction

What Is Knora?

Knora (Knowledge Organization, Representation, and Annotation) is a software
framework for storing, sharing, and working with humanities data.

Knora is based on the idea that the continuous availability and reusability of
digital qualitative research data in the humanities requires a common,
flexible data representation and storage technology capable of performing
queries across large quantities of heterogeneous data, organised according to
project-specific data structures that cannot be known in advance. It also
requires a convenient, storage-independent way for Virtual Research
Environments (VREs) and automated data-processing software to access, query,
and add to this data.

To solve the data representation and storage problem, Knora represents
humanities data as RDF [http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/] graphs, using OWL [http://www.w3.org/TR/2012/REC-owl2-primer-20121211/] ontologies that express abstract,
cross-disciplinary commonalities in the structure and semantics of research
data. Each project using Knora extends these abstractions by providing its own
project-specific ontology, which more specifically describes the structure and
semantics of its data. Existing non-RDF repositories can readily be converted
to an RDF format based on the proposed abstractions. This design makes it
possible to preserve the semantics of data imported from relational databases,
XML-based markup systems, and other types of storage, as well as to query,
annotate, and link together heterogeneous data in a unified way. By offering
a shared, standards-based, extensible infrastructure for diverse humanities
projects, Knora also deals with the issue of conversion and
migration caused by the obsolescence of file and data formats in an efficient
and feasible manner.

To solve the access problem, Knora offers a generic HTTP-based API. In the
Knora framework, the standard implementation of this API is a server program
called the Knora API Server. The Knora API allows applications to query and
work with data in terms of the concepts expressed by the Knora ontologies,
without dealing with the complexities of the underlying storage system and its
query language (e.g. SPARQL [https://www.w3.org/TR/sparql11-overview/]). It also provides features that are not part of
SPARQL, such as access control and automatic versioning of data. While the
Knora API is best suited to interacting with RDF repositories based on the
Knora ontologies, it can also be implemented as a gateway to other sorts of
repositories, including non-RDF repositories.

Knora uses a high-performance media server, called Sipi, for serving and
converting binary media files such as images and video. Sipi can efficiently
convert between many different formats on demand, preserving embedded
metadata, and implements the
International Image Interoperability Framework (IIIF) [http://iiif.io/].

Knora provides a general-purpose, browser-based VRE called SALSAH, which
relies on the components described above. Using the Knora API, a project can
also create its own VRE or project-specific web site, optionally reusing
components from SALSAH.

Knora is thus a set of standard components that can be used separately or
together, or extended to meet a project’s specific needs. You can learn more
about each component:

	The Knora Ontologies, a set of OWL ontologies describing a common
structure for describing humanities data in RDF.

	The Knora API Server, a server program written in Scala [http://www.scala-lang.org/] that implements
an HTTP-based API for accessing and working with data stored in an RDF
triplestore according to the structures defined in the Knora ontologies.

	Sipi (to be released soon), a high-performance media server written in C++.

	The SALSAH GUI (to be release soon), a web-based virtual research
environment for working with data managed by the Knora API server.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	Introduction

An Example Project: Incunabula

This section introduces some of the basic concepts involved in creating
ontologies for Knora projects, by means of a relatively simple example
project. Before reading this document, it will be helpful to have some
familiarity with the basic concepts explained in The Knora Base Ontology.

Knora comes with two example projects, called incunabula and
images-demo. Here we will consider the incunabula example, which is
a reduced version of a real research project on early printed books. It
is designed to store an image of each page of each book, as well as RDF data
about books, pages, their contents, and relationships between them. At the moment,
only the RDF data is provided in the example project, not the images.

The incunabula ontology is in the file incunabula-onto.ttl, and its
data is in the file incunabula-demo-data.ttl. Both these files are in a
standard RDF file format called Turtle [https://www.w3.org/TR/turtle/]. The Knora distribution includes
sample scripts (in the webapi/scripts directory) for importing these files
directly into different triplestores. If you are starting a new project from
scratch, you can adapt these scripts to import your ontology (and any existing
RDF data) into your triplestore for use with Knora.

The syntax of Turtle is fairly simple: it is basically a sequence of triples.
We will consider some details of Turtle syntax as we go along.

The Incunabula Ontology

Here we will just focus on some of the main aspects of the ontology. An
ontology file typically begins by defining prefixes for the IRIs of other
ontologies that will be referred to. First there are some prefixes for
ontologies that are very commonly used in RDF:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

The rdf, rdfs, and owl ontologies contain basic properties that
are used to define ontology entities. The xsd ontology contains
definitions of literal data types such as string and integer. (For
more information about these ontologies, see the references in The Knora Base Ontology.)
The foaf ontology contains classes and properties for representing people.

Then we define prefixes for Knora ontologies:

@prefix knora-base: <http://www.knora.org/ontology/knora-base#> .
@prefix dc: <http://www.knora.org/ontology/dc#> .
@prefix salsah-gui: <http://www.knora.org/ontology/salsah-gui#> .

The knora-base ontology contains Knora’s core abstractions, and is
described in The Knora Base Ontology. The dc ontology is Knora’s version of
Dublin Core [http://dublincore.org/]. It is intended to make it possible to define properties in a Knora
project in terms of Dublin Core abstractions, to facilitate queries that
search for data across multiple projects. The salsah-gui ontology includes
properties that Knora projects must use to enable SALSAH, Knora’s generic
virtual research environment.

For convenience, we can use the empty prefix to refer to the incunabula
ontology itself:

@prefix : <http://www.knora.org/ontology/incunabula#> .

However, outside the ontology file, it would make more sense to define an
incunabula prefix to refer to the incunabula ontology.

Properties

All the content produced by a Knora project must be stored in Knora resources
(see Resource Classes). Resources have properties that point
to different parts of their contents; for example, the incunabula project
contains books, which have properties like title. Every property that
poitns to a Knora value must be a subproperty of knora-base:hasValue, and
every property that points to another Knora resource must be a subproperty of
knora-base:hasLinkTo.

Here is the definition of the incunabula:title property:

:title rdf:type owl:ObjectProperty ;

 rdfs:subPropertyOf dc:title ;

 rdfs:label "Titel"@de ,
 "Titre"@fr ,
 "Titolo"@it ,
 "Title"@en ;

 knora-base:subjectClassConstraint :book ;

 knora-base:objectClassConstraint knora-base:TextValue ;

 salsah-gui:guiOrder "1"^^xsd:integer ;

 salsah-gui:guiElement salsah-gui:SimpleText ;

 salsah-gui:guiAttribute "size=80" ,
 "maxlength=255" .

The definition of incunabula:title consists of a list of triples, all of
which have :title as their subject. To avoid repeating :title for each
triple, Turtle syntax allows us to use a semicolon (;) to separate triples
that have the same subject. Moreover, some triples also have the same
predicate; a comma (,) is used to avoid repeating the predicate. The
definition of :title says:

	rdf:type owl:ObjectProperty: It is an owl:ObjectProperty. There are
two kinds of OWL properties: object properties and datatype properties.
Object properties point to objects, which have IRIs and can have their own
properties. Datatype properties point to literal values, such as strings and
integers.

	rdfs:subPropertyOf dc:title: It is a subproperty of dc:title, which
is a subproperty of knora-base:hasValue. It would have been possible to
define incunabula:title as a direct subproperty of knora-base:hasValue,
and indeed many properties in Knora projects are defined in that way. The
advantage of using dc:title is that if you do a search for resources that
have a certain dc:title, and there is a resource with a matching
incunabula:title, the search results could include that resource. (This
feature is planned but not yet implemented in the Knora API server.)

	rdfs:label "Titel"@de, etc.: It has the specified labels in various
languages. These are needed, for example, by user interfaces, to prompt the
user to enter a value.

	knora-base:subjectClassConstraint :book: The subject of the property
must be an incunabula:book.

	knora-base:objectClassConstraint knora-base:TextValue: The object of
this property must be a knora-base:TextValue (which is a subclass of
knora-base:Value).

	salsah-gui:guiOrder "1"^^xsd:integer: When a resource with this and
other properties is displayed in SALSAH, this property will be displayed
first. The notation "1"^^xsd:integer means that the literal "1" is
of type xsd:integer.

	salsah-gui:guiElement salsah-gui:SimpleText: When SALSAH asks a user to
enter a value for this property, it should use a simple text field.

	salsah-gui:guiAttribute "size=80" , "maxlength=255": The SALSAH text
field for entering a value for this property should be 80 characters wide,
and should accept at most 255 characters.

The incunabula ontology contains several other property definitions that
are basically similar. Note that different subclasses of Value are used.
For example, incunabula:pubdate, which represents the publication date of
a book, points to a knora-base:DateValue. The DateValue class stores a
date range, with a specified degree of precision and a preferred calendar
system for display.

A property can point to a Knora resource instead of to a Knora value. For
example, in the incunabula ontology, there are resources representing
pages and books, and each page is part of some book. This relationship is
expressed using the property incunabula:partOf:

:partOf rdf:type owl:ObjectProperty ;

 rdfs:subPropertyOf knora-base:isPartOf ;

 rdfs:label "ist ein Teil von"@de ,
 "est un part de"@fr ,
 "e una parte di"@it ,
 "is a part of"@en ;

 rdfs:comment """Diese Property bezeichnet eine Verbindung zu einer anderen Resource, in dem ausgesagt wird, dass die vorliegende Resource ein integraler Teil der anderen Resource ist. Zum Beispiel ist eine Buchseite ein integraler Bestandteil genau eines Buches."""@de ;

 knora-base:subjectClassConstraint :page ;

 knora-base:objectClassConstraint :book ;

 salsah-gui:guiOrder "2"^^xsd:integer ;

 salsah-gui:guiElement salsah-gui:Searchbox .

The key things to notice here are:

	rdfs:subPropertyOf knora-base:isPartOf: The Knora base ontology provides
a generic isPartOf property to express part-whole relationships. Like
many properties defined in knora-base, a project cannot use
knora-base:isPartOf directly, but must make a subproperty such as
incunabula:partOf. It is important to note that knora-base:isPartOf
is a subproperty of knora-base:hasLinkTo. Any property that points to a
knora-base:Resource must be a subproperty of knora-base:hasLinkTo.
In Knora terminology, such a property is called a link property.

	knora-base:objectClassConstraint :book: The object of this property must
be a member of the class incunabula:book, which, as we will see below,
is a subclass of knora-base:Resource.

	salsah-gui:guiElement salsah-gui:Searchbox: When SALSAH prompts a user
to select the book that a page is part of, it should provide a search box
enabling the user to find the desired book.

Because incunabula:partOf is a link property, it must always accompanied
by a link value property, which enables Knora to store metadata about each
link that is created with the link property. This metadata includes the date
and time when the link was created, its owner, the permissions it grants, and
whether it has been deleted. Storing this metadata allows Knora to authorise
users to see or modify the link, as well as to query a previous state of a
repository in which a deleted link had not yet been deleted. (The ability to
query previous states of a repository is planned for Knora API version 2.)

The name of a link property and its link value property must be related by the
following naming convention: to determine the name of the link value property,
add the word Value to the name of the link property. Hence, the
incunabula ontology defines the property partOfValue:

:partOfValue rdf:type owl:ObjectProperty ;

 rdfs:subPropertyOf knora-base:isPartOfValue ;

 knora-base:subjectClassConstraint :page ;

 knora-base:objectClassConstraint knora-base:LinkValue .

As a link value property, incunabula:partOfValue must point to a
knora-base:LinkValue. The LinkValue class is an RDF reification of a triple
(in this case, the triple that links a page to a book). For more details about
this, see LinkValue.

Note that the property incunabula:hasAuthor points to a
knora-base:TextValue, because the incunabula project repåresents
authors simply by their names. A more complex project could represent each
author as a resource, in which case incunabula:hasAuthor would need to be
a subproperty of knora-base:hasLinkTo.

Resource Classes

The two main resource classes in the incunabula ontology are book and page.
Here is incunabula:book:

:book rdf:type owl:Class ;

 rdfs:subClassOf knora-base:Resource ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :title ;
 owl:minCardinality "1"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :hasAuthor ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :publisher ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :publoc ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :pubdate ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :location ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :url ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :description ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :physical_desc ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :note ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :citation ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :book_comment ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger] ;

 knora-base:resourceIcon "book.gif" ;

 rdfs:label "Buch"@de ,
 "Livre"@fr ,
 "Libro"@it ,
 "Book"@en ;

 rdfs:comment """Diese Resource-Klasse beschreibt ein Buch"""@de .

Like every Knora resource class, incunabula:book is a subclass of
knora-base:Resource. It is also a subclass of a number of other classes of type
owl:Restriction, which are defined in square brackets, using Turtle’s
syntax for anonymous blank nodes. Each owl:Restriction specifies a
cardinality for a property that is allowed in resources of type
incunabula:book. A cardinality is indeed a kind of restriction: it means
that a resource of this type may have, or must have, a certain number of
instances of the specified property. For example, incunabula:book has
cardinalities saying that a book must have at least one title and at most one
publication date. In the Knora API version 1, the word ‘occurrence’ is used
instead of ‘cardinality’.

As explained in OWL Cardinalities, these
are the cardinalities supported by Knora:

	owl:cardinality 1 A resource of this class must have exactly one
instance of the specified property (occurrence 1).

	owl:minCardinality 1 A resource of this class must have at least one
instance of the specified property (occurrence 1-n).

	owl:maxCardinality 1 A resource of this class may have zero or one
instance of the specified property (occurrence 0-1).

	owl:minCardinality 0 A resource of this class may have zero or more
instances of the specified property (occurrence 0-n).

Note that incunabula:book specifies a cardinality of owl:minCardinality
0 on the property incunabula:hasAuthor. At first glance, this might seem
as if it serves no purpose, since it says that the property is optional and
can have any number of instances. You may be wondering whether this
cardinality could simply be omitted from the definition of
incunabula:book. However, Knora requires every property of a resource to
have some cardinality in the resource’s class. This is because Knora uses
the cardinalities to determine which properties are possible for instances
of the class, and the Knora API relies on this information. If there was no
cardinality for incunabula:hasAuthor, Knora would not allow a book to have
an author.

Here is the definition of incunabula:page:

:page rdf:type owl:Class ;

 rdfs:subClassOf knora-base:StillImageRepresentation ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :pagenum ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :partOfValue ;
 owl:cardinality "1"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :partOf ;
 owl:cardinality "1"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :seqnum ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :description ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :citation ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :page_comment ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :origname ;
 owl:cardinality "1"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :hasLeftSidebandValue ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :hasLeftSideband ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :hasRightSidebandValue ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :hasRightSideband ;
 owl:maxCardinality "1"^^xsd:nonNegativeInteger] ,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :transcription ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger] ;

 knora-base:resourceIcon "page.gif" ;

 rdfs:label "Seite"@de ,
 "Page"@fr ,
 "Page"@en ;

 rdfs:comment """Eine Seite ist ein Teil eines Buchs"""@de ,
 """Une page est une partie d'un livre"""@fr ,
 """A page is a part of a book"""@en .

The incunabula:page class is a subclass of
knora-base:StillImageRepresentation, which is a subclass of
knora-base:Representation, which is a subclass of knora-base:Resource.
The class knora-base:Representation is used for resources that contain
metadata about files stored by Knora. Each It has different subclasses that can
hold different types of files, including still images, audio, and video files.
A given Representation can store metadata about several different files,
as long as they are of the same type and are semantically equivalent, e.g.
are different versions of the same image with different colorspaces, so that
coordinates in one file will work in the other files.

In Knora, a subclass inherits the cardinalities defined in its superclasses.
Let’s look at the class hierarchy of incunabula:page, starting with
knora-base:Representation:

:Representation rdf:type owl:Class ;

 rdfs:subClassOf :Resource ,
 [rdf:type owl:Restriction ;
 owl:onProperty :hasFileValue ;
 owl:minCardinality "1"^^xsd:nonNegativeInteger
] ;

 rdfs:comment "A resource that can store one or more FileValues"@en .

This says that a Representation must have at least one instance of the
property hasFileValue, which is defined like this:

:hasFileValue rdf:type owl:ObjectProperty ;

 rdfs:subPropertyOf :hasValue ;

 :subjectClassConstraint :Representation ;

 :objectClassConstraint :FileValue .

The subject of hasFileValue must be a Representation, and its object
must be a FileValue. There are different subclasses of FileValue for
different kinds of files, but we’ll skip the details here.

This is the definition of knora-base:StillImageRepresentation:

:StillImageRepresentation rdf:type owl:Class ;

 rdfs:subClassOf :Representation ,
 [rdf:type owl:Restriction ;
 owl:onProperty :hasStillImageFileValue ;
 owl:minCardinality "1"^^xsd:nonNegativeInteger
] ;

 rdfs:comment "A resource that can contain two-dimensional still image files"@en .

It must have at least one instance of the property hasStillImageFileValue, which
is defined as follows:

:hasStillImageFileValue rdf:type owl:ObjectProperty ;

 rdfs:subPropertyOf :hasFileValue ;

 :subjectClassConstraint :StillImageRepresentation ;

 :objectClassConstraint :StillImageFileValue .

Because hasStillImageFileValue is a subproperty of hasFileValue, the
cardinality on hasStillImageFileValue, defined in the subclass
StillImageRepresentation, overrides the cardinality on hasFileValue,
defined in the superclass Representation. In other words, the more general
cardinality in the superclass is replaced by a more specific cardinality in
the base class. Since incunabula:page is a subclass of
StillImageRepresentation, it inherits the cardinality on
hasStillImageFileValue. As a result, a page must have at least one image
file attached to it.

Here’s another example of cardinality inheritance. The class knora-base:Resource
has a cardinality for knora-base:seqnum. The idea is that resources of any
type could be arranged in some sort of sequence. As we saw above,
incunabula:page is a subclass of knora-base:Resource. But
incunabula:page has its own cardinality for incunabula:seqnum, which
is a subproperty of knora-base:seqnum. Once again, the subclass’s
cardinality on the subproperty replaces the superclass’s cardinality on the
superproperty: a page is allowed to have an incunabula:seqnum, but it is
not allowed to have a knora-base:seqnum.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

The Knora Ontologies

The Knora ontologies provide a generic framework for describing humanities
research data, allowing data from different projects to be combined, augmented,
and reused.

	The Knora Base Ontology
	Introduction

	The Knora Data Model

	Authorization

	Consistency Checking

	Open Questions

	Notes

	References

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora Ontologies

The Knora Base Ontology

	Introduction
	Resource Description Framework (RDF)

	The Knora Data Model
	Projects

	Resources
	Properties of Resource

	Representations

	Standard Resource Classes

	Values
	Properties of Value

	Subclasses of Value
	TextValue

	DateValue

	IntValue

	ColorValue

	DecimalValue

	UriValue

	BooleanValue

	GeomValue

	GeonameValue

	IntervalValue

	ListValue

	FileValue

	LinkValue

	ExternalResValue

	Links Between Resources

	Text with Standoff Markup
	Subclasses of StandoffTag
	Standoff Data Type Tags

	StandoffLinkTag

	Internal Links in a TextValue

	Mapping to Create Standoff From XML

	Standoff in Digital Editions

	Querying Standoff in SPARQL

	Authorization
	Users and Groups

	Permissions

	Consistency Checking
	OWL Cardinalities

	Constraints on the Types of Property Subjects and Objects

	Consistency Constraint Example

	Open Questions
	Extending Existing Resource Definitions

	Notes

	References

Introduction

Resource Description Framework (RDF)

Knora uses a hierarchy of ontologies based on the Resource Description
Framework (RDF [http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/]), RDF Schema (RDFS [http://www.w3.org/TR/2014/REC-rdf-schema-20140225/]), and the Web Ontology Language (OWL [https://www.w3.org/TR/owl2-quick-reference/]).
Both RDFS and OWL are expressed in RDF. RDF expresses information as a set of
statements (called triples). A triple consists of a subject, a predicate,
and an object:

[image: digraph { rankdir = LR node [style = filled, fontcolor = white] subject [color = navy, fillcolor = slateblue4] object [color = tomato3, fillcolor = tomato2] subject -> object [label = "predicate", fontsize = 11, color = cyan4] }]

The object may be either a literal value (such as a name or number) or
another subject. Thus it is possible to create complex graphs that
connect many subjects, like this:

[image: digraph { rankdir = LR { node [color = navy, fillcolor = slateblue4, style = filled, fontcolor = white] sub1 [label = "subject no. 1"] sub2 [label = "subject no. 2"] sub3 [label = "subject no. 3"] } { node [shape = box, color = firebrick] lit1 [label = "literal no. 1"] lit2 [label = "literal no. 2"] lit3 [label = "literal no. 3"] } edge [fontsize = 11, color = cyan4] sub1 -> lit1 [label = "predicate no. 1"] sub1 -> lit2 [label = "predicate no. 2"] sub1 -> sub2 [label = "predicate no. 3"] sub2 -> lit3 [label = "predicate no. 4"] sub2 -> sub3 [label = "predicate no. 5"] // Add invisible edges to order the nodes from top to bottom. { rank = same lit1 -> lit2 -> sub2 [style = invis] rankdir = TB } { rank = same lit3 -> sub3 [style = invis] rankdir = TB } }]

In RDF, each subject and predicate has a unique, URL-like identifier
called an Internationalized Resource Identifier (IRI [http://tools.ietf.org/html/rfc3987]). Within a given project,
IRIs typically differ only in their last component (the “local part”), which
is often the fragment following a # character. Such IRIs share a
long “prefix”. In Turtle [http://www.w3.org/TR/turtle/] and similar formats for
writing RDF, a short prefix label can be defined to represent the long
prefix. Then an IRI can be written as a prefix label and a local part,
separated by a colon (:). For example, if the “example” project’s
long prefix is http://www.example.org/rdf#, and it contains subjects
with IRIs like http://www.example.org/rdf#book, we can define the
prefix label ex to represent the prefix label, and write prefixed
names for IRIs:

[image: digraph { { node [color = navy, fillcolor = slateblue4, style = filled, fontcolor = white] book [label = "ex:book1"] page [label = "ex:page1"] } { node [shape = box, color = firebrick] title [label = "‘Das Narrenschiff’"] author [label = "‘Sebastian Brant’"] pagename [label = "‘a4r’"] } edge [fontsize = 11, color = cyan4] book -> title [label = "ex:title"] book -> author [label = "ex:author"] page -> book [label = "ex:pageOf"] page -> pagename [label = "ex:pagename"] }]

In this document, we use the prefix label kb to represent the Knora base
ontology, [1] but we usually omit it for brevity.

The Knora Data Model

The Knora data model is based on the observation that, in the
humanities, a value or literal is often itself structured and can be
highly complex. Moreover, a value may have its own metadata, such as its
creation date, information about permissions, and so on.
Therefore, the Knora base ontology describes structured value types that
can store this type of metadata. In the diagram below, a book (ex:book2)
has a title (identified by the predicate ex:title) and a publication
date (ex:pubdate), each of which has some metadata.

[image: digraph { book [label = "ex:book2", style = filled, fontcolor = white, color = navy, fillcolor = slateblue4] { node [style = filled, fontcolor = white, color = tomato3, fillcolor = tomato2] title [label = "kb:TextValue"] pubdate [label = "kb:DateValue"] } { node [shape = box, color = firebrick] titleStr [label = "‘King Lear’"] titleCreationDate [label = "2015-08-12 13:00"] startJDN [label = "2364669"] endJDN [label = "2364669"] pubdateCreationDate [label = "2015-08-12 13:03"] } edge [fontsize = 11, color = cyan4] book -> title [label = "ex:title"] book -> pubdate [label = "ex:pubdate"] title -> titleStr [label = "kb:valueHasString"] title -> titleCreationDate [label = "kb:valueCreationDate"] pubdate -> startJDN [label = "kb:valueHasStartJDN"] pubdate -> endJDN [label = "kb:valueHasEndJDN"] pubdate -> pubdateCreationDate [label = "kb:valueCreationDate"] }]

Projects

In Knora, each item of data belongs to some particular project. Each
project using Knora must define a kb:knoraProject, which has these
properties (cardinalities are indicated in parentheses after each
property name):

	shortname (1)

	A short name that can be used to identify the project in
configuration files and the like.

	basepath (1)

	The filesystem path of the directory where the project’s files are
stored.

	foaf:name (0-1)

	The name of the project.

	description (0-1)

	A description of the project.

	belongsTo (0-1)

	The kb:Institution that the project belongs to.

Resources and values are associated with a project by means of the
kb:attachedToProject property, as described in
The Knora Data Model. Users are associated with a project by means
of the kb:isInProject property, as described in Users and Groups.

Resources

All the content produced by a project (e.g. digitised primary source materials
or research data) must be stored in objects that belong to subclasses of
kb:Resource, so that the Knora API server can query and update that
content. Each project using the Knora base ontology must define its own OWL
classes, derived from kb:Resource, to represent the types of data it deals
with. A subclass of kb:Resource may additionally be a subclass of any
other class, e.g. an industry-standard class such as foaf:Person;
this can facilitate searches across projects.

Resources have properties that point to different parts of the content they
contain. For example, a resource representing a book could have a property
called hasAuthor, pointing to the author of the book. There are two
possible kinds of content in a Knora resource: Knora values
(see Values) or links to other resources (see Links Between Resources).
Properties that point to Knora values must be subproperties of
kb:hasValue, and properties that point to other resources must be
subproperties of kb:hasLinkTo. Either of these two types of properties may
also be a subproperty of any other property, e.g. an industry-standard
property such as foaf:name; this can facilitate searches across projects.
Each property definition must specify the types that its subjects and objects
must belong to (see Constraints on the Types of Property Subjects and Objects for details).

Each project-specific resource class definition must use OWL cardinality
restrictions to specify the properties that resources of that class can
have (see OWL Cardinalities for details).

Resources are not versioned; only their values are versioned (see
Values).

Every resource is required to have an rdfs:label. The object of this
property is an xsd:string, rather than a Knora value; hence it is not
versioned. A user who has modify permission on a resource
Authorization can change its label.

A resource can be marked as deleted; the Knora API server does this by adding
the predicate kb:isDeleted true to the resource. An optional
kb:deleteComment may be added to explain why the resource has been marked
as deleted. Deleted resources are normally hidden. They cannot be undeleted,
because even though resources are not versioned, it is necessary to be able to
find out when a resource was deleted. If desired, a new resource can be
created by copying data from a deleted resource.

Properties of Resource

	creationDate (1)

	The time when the resource was created.

	attachedToUser (1)

	The user who owns the resource.

	attachedToProject (1)

	The project that the resource is part of.

	lastModificationDate (0-1)

	A timestamp indicating when the resource (or one of its values) was
last modified.

	seqnum (0-1)

	The sequence number of the resource, if it is part of an ordered
group of resources, such as the pages in a book.

	isDeleted (1)

	Indicates whether the resource has been deleted.

	deleteDate (0-1)

	If the resource has been deleted, indicates when it was deleted.

	deleteComment (0-1)

	If the resource has been deleted, indicates why it was deleted.

Resources can have properties that point to other resources; see
Links Between Resources. A resource grants permissions to groups of users;
see Authorization.

Representations

It is not practical to store all data in RDF. In particular, RDF is not
a good storage medium for binary data such as images. Therefore, Knora
stores such data outside the triplestore, in ordinary files. A resource
can have one or more files attached to it. For each file, there is a
kb:FileValue in the triplestore containing metadata about the file
(see FileValue). A resource that has file values
must belong to one of the subclasses of kb:Representation. The base
class Representation, which is not intended to be used directly, has
this property:

	hasFileValue (1-n)

	Points to one or more file values.

Its subclasses, which are intended to be used directly in data, include:

	StillImageRepresentation

	A representation containing still image files.

	MovingImageRepresentation

	A representation containing video files.

	AudioRepresentation

	A representation containing audio files.

	DDDrepresentation

	A representation containing 3D images.

	TextRepresentation

	A representation containing formatted text files, such as XML files.

	DocumentRepresentation

	A representation containing documents (such as PDF files) that are
not text files.

There are two ways for a project to design classes for representations.
The simpler way is to create a resource class that represents a thing in
the world (such as ex:Painting) and also belongs to a subclass of
Representation. This is adequate if the class can have only one type
of file attached to it. For example, if paintings are represented only
by still images, ex:Painting could be a subclass of
StillImageRepresentation. This is the only approach supported in
version 1 of the Knora API.

The more flexible approach, which is allowed by the Knora base ontology
and will be supported by version 2 of the Knora API, is for each
ex:Painting to use the kb:hasRepresentation property to point to
other resources containing files that represent the painting. Each of
these other resources can extend a different subclass of
Representation. For example, a painting could have a
StillImageRepresentation as well as a DDDrepresentation.

Standard Resource Classes

In general, each project using Knora must define its own subclasses of
kb:Resource. However, the Knora base ontology provides some standard
subclasses of kb:Resource, which are intended to be used by any
project:

	Region

	Represents a region of a Representation (see Representations).

	Annotation

	Represents an annotation of a resource. The hasComment property
points to the text of the annotation, represented as a
kb:TextValue.

	LinkObj

	Represents a link that connects two or more resources. A LinkObj
has a hasLinkTo property pointing to each resource that it
connects, as well as a hasLinkToValue property pointing to a
reification of each of these direct links (see Links Between Resources).
A LinkObj is more complex (and hence less convenient and
readable) than a simple direct link, but it has the advantage that
it can be annotated using an Annotation. For improved
readability, a project can make its own subclasses of LinkObj
with specific meanings.

Values

The Knora base ontology defines a set of OWL classes that are derived
from kb:Value and represent different types of structured values
found in humanities data. This set of classes may not be extended by
project-specific ontologies.

A value is always part of one particular resource, which points to it
using some property derived from hasValue. For example, a
project-specific ontology could specify a Book class with a property
hasSummary (derived from hasValue), and that property could have
a knora-base:objectClassConstraint of TextValue. This would mean
that the summary of each book is represented as a TextValue.

Knora values are versioned. Existing values are not modified. Instead, a
new version of an existing value is created. The new version is linked
to the old version via the previousValue property.

“Deleting” a value means marking it with kb:isDeleted. An optional
kb:deleteComment may be added to explain why the value has been
marked as deleted. Deleted values are normally hidden.

Most types of values are marked as deleted without creating a new
version of the value. However, link values must be treated as a special
case. Before a LinkValue can be marked as deleted, its reference
count must be decremented to 0. Therefore, a new version of the
LinkValue is made, with a reference count of 0, and it is this new
version that is marked as deleted.

To simplify the enforcement of ontology constraints, and for consistency
with resource updates, no new versions of a deleted value can be made;
it is not possible to undelete. Instead, if desired, a new value can be
created by copying data from a deleted value.

Properties of Value

	valueCreationDate (1)

	The date and time when the value was created.

	attachedToUser (1)

	The user who owns the value.

	attachedToProject (0-1)

	The project that the value is part of. If not specified, defaults to
the project of the containing resource.

	valueHasString (1)

	A human-readable string representation of the value’s contents,
which is available to Knora’s full-text search index.

	valueHasOrder (0-1)

	A resource may have several properties of the same type with
different values (which will be of the same class), and it may be
necessary to indicate an order in which these values occur. For
example, a book may have several authors which should appear in a
defined order. Hence, valueHasOrder, when present, points to an
integer literal indicating the order of a given value relative to
the other values of the same property. These integers will not
necessarily start at any particular number, and will not necessarily
be consecutive.

	previousValue (0-1)

	The previous version of the value.

	isDeleted (1)

	Indicates whether the value has been deleted.

	deleteDate (0-1)

	If the value has been deleted, indicates when it was deleted.

	deleteComment (0-1)

	If the value has been deleted, indicates why it was deleted.

Each Knora value can grant permissions (see Authorization).

Subclasses of Value

TextValue

Represents text, possibly including markup. The text is the object of
the valueHasString property. A line break is represented as a
Unicode line feed character (U+000A). The non-printing Unicode
character INFORMATION SEPARATOR TWO (U+001E) can be used to separate
words that are separated only by standoff markup (see below), so they
are recognised as separate in a full-text search index.

Markup is stored using this property:

	valueHasStandoff (0-n)

	Points to a standoff markup tag. See Text with Standoff Markup.

	valueHasMapping (0-1)

	Points to the mapping used to create the standoff markup
and to convert it back to the original XML. See Mapping to Create Standoff From XML.

DateValue

Humanities data includes many different types of dates. In Knora, a date
has a specified calendar, and is always represented as a period with
start and end points (which may be equal), each of which has a precision
(DAY, MONTH, or YEAR). Internally, the start and end points
are stored as two Julian Day Numbers. This calendar-independent
representation makes it possible to compare and search for dates
regardless of the calendar in which they were entered. Properties:

	valueHasCalendar (1)

	The name of the calendar in which the date should be displayed.
Currently GREGORIAN and JULIAN are supported.

	valueHasStartJDN (1)

	The Julian Day Number of the start of the period (an
xsd:integer).

	valueHasStartPrecision (1)

	The precision of the start of the period.

	valueHasEndJDN (1)

	The Julian Day Number of the end of the period (an xsd:integer).

	valueHasEndPrecision (1)

	The precision of the end of the period.

IntValue

Represents an integer. Property:

	valueHasInteger (1)

	An xsd:integer.

ColorValue

	valueHasColor (1)

	A string representing a color. The string encodes a color as hexadecimal RGB values, e.g. “#FF0000”.

DecimalValue

Represents an arbitrary-precision decimal number. Property:

	valueHasDecimal (1)

	An xsd:decimal.

UriValue

Represents a non-Knora URI. Property:

	valueHasUri (1)

	An xsd:anyURI.

BooleanValue

Represents a boolean value. Property:

	valueHasBoolean (1)

	An xsd:boolean.

GeomValue

Represents a geometrical object as a JSON string, using normalized
coordinates. Property:

	valueHasGeometry (1)

	A JSON string.

GeonameValue

Represents a geolocation, using the identifiers found at
GeoNames [http://geonames.org]. Property:

	valueHasGeonameCode (1)

	the identifier of a geographical feature from
GeoNames [http://geonames.org], represented as an xsd:string.

IntervalValue

Represents a time interval, with precise start and end times on a
timeline, e.g. relative to the beginning of an audio or video file.
Properties:

	valueHasIntervalStart (1)

	An xsd:decimal representing the start of the interval in
seconds.

	valueHasIntervalEnd (1)

	An xsd:decimal representing the end of the interval in seconds.

ListValue

Projects often need to define lists or hierarchies of categories that
can be assigned to many different resources. Then, for example, a user
interface can provide a drop-down menu to allow the user to assign a
category to a resource. The ListValue class provides a way to
represent these sorts of data structures. It can represent either a flat
list or a tree.

A ListValue has this property:

	valueHasListNode (1)

	Points to a ListNode.

Each ListNode can have the following properties:

	isRootNode (0-1)

	Set to true if this is the root node.

	hasSubListNode (0-n)

	Points to the node’s child nodes, if any.

	hasRootNode (0-1)

	Points to the root node of the list (absent if isRootNode is true).

	listNodePosition (0-1)

	An integer indicating the node’s position in the list of its
siblings (absent if isRootNode is true).

	listNodeName (0-1)

	The node’s human-readable name (absent if isRootNode is true).

FileValue

Knora stores certain kinds of data outside the triplestore, in files
(see Representations). Each digital object that is
stored outside the triplestore has associated metadata, which is stored
in the triplestore in a kb:FileValue. The base class FileValue,
which is not intended to be used directly, has these properties:

	internalFilename (1)

	The name of the file as stored by the Knora API server.

	internalMimeType (1)

	The MIME type of the file as stored by the Knora API server.

	originalFilename (0-1)

	The original name of the file when it was uploaded to the Knora API
server.

	originalMimeType (0-1)

	The original MIME type of the file when it was uploaded to the Knora
API server.

	isPreview (0-1)

	A boolean indicating whether the file is a preview, i.e.a small
image representing the contents of the file. A preview is always a
StillImageFileValue, regardless of the type of the enclosing
Representation.

The subclasses of FileValue, which are intended to be used directly
in data, include:

	StillImageFileValue

	Contains metadata about a still image file.

	MovingImageFileValue

	Contains metadata about a video file.

	AudioFileValue

	Contains metadata about an audio file.

	DDDFileValue

	Contains metadata about a 3D image file.

	TextFileValue

	Contains metadata about a text file.

	DocumentFileValue

	Contains metadata about a document (such as PDF) that is not a text
file.

Each of these classes contains properties that are specific to the type
of file it describes. For example, still image files have dimensions,
video files have frame rates, and so on.

The files in a given representation must be semantically equivalent,
meaning that coordinates that relate to one file must also be valid for
other files in the same representation. Coordinates in Knora are
expressed as fractions of the size of the object on some dimension; for
example, image coordinates are expressed as fractions of its width and
height, rather than in pixels. Therefore, the image files in a
StillImageRepresentation must have the same aspect ratio, but they
need not have the same dimensions in pixels. Similarly, the audio and
video files in an AudioRepresentation or
MovingImageRepresentation must have the same length in seconds, but
may have different bitrates.

FileValue objects are versioned like other values, and the actual
files stored by Knora are also versioned. Version 1 of the Knora API
does not provide a way to retrieve a previous version of a file, but
this feature will be added in a subsequent version of the API.

LinkValue

A LinkValue is an RDF “reification” containing metadata about a link
between two resources. It is therefore a subclass of rdf:Statement
as well as of Value. It has these properties:

	rdf:subject (1)

	The resource that is the source of the link.

	rdf:predicate (1)

	The link property.

	rdf:object (1)

	The resource that is the target of the link.

	valueHasRefCount (1)

	The reference count of the link. This is meaningful when the
LinkValue describes resource references in Standoff text markup
(see StandoffLinkTag). Otherwise, the reference
count will always be 1 (if the link exists) or 0 (if it has been
deleted).

For details about how links are created in Knora, see Links Between Resources.

ExternalResValue

Represents a resource that is not stored in the RDF triplestore managed
by the Knora API server, but instead resides in an external repository
managed by some other software. The ExternalResValue contains the
information that the Knora API server needs in order to access the
resource, assuming that a suitable gateway plugin is installed.

	extResAccessInfo (1)

	The location of the repository containing the external resource
(e.g. its URL).

	extResId (1)

	The repository-specific ID of the external resource.

	extResProvider (1)

	The name of the external provider of the resource.

Links Between Resources

A link between two resources is expressed, first of all, as a triple, in
which the subject is the resource that is the source of the link, the
predicate is a “link property” (a subproperty of kb:hasLinkTo), and
the object is the resource that is the target of the link.

It is also useful to store metadata about links. For example, Knora
needs to know who owns the link, who has permission to modify it, when
it was created, and so on. Such metadata cannot simply describe the link
property, because then it would refer to that property in general, not
to any particular instance in which that property is used to connect two
particular resources. To attach metadata to a specific link in RDF, it
is necessary to create an RDF “reification”. A reification makes
statements about a particular triple (subject, predicate, object), in
this case the triple that expresses the link between the resources.
Knora uses reifications of type kb:LinkValue (described in
LinkValue) to store metadata about links.

For example, suppose a project describes paintings that belong to
collections. The project can define an ontology as follows (expressed
here in Turtle format, and simplified for the purposes of illustration):

@prefix kb <http://www.knora.org/ontology/knora-base#> .
@prefix : <http://www.knora.org/ontology/paintings#> .

:Painting rdf:type owl:Class ;
 rdfs:subClassOf kb:Resource ,
 [rdf:type owl:Restriction ;
 owl:onProperty :hasArtist ;
 owl:cardinality 1] ,
 [rdf:type owl:Restriction ;
 owl:onProperty :hasTitle ;
 owl:cardinality 1] ;
 [rdf:type owl:Restriction ;
 owl:onProperty :isInCollection ;
 owl:minCardinality 1] ;
 [rdf:type owl:Restriction ;
 owl:onProperty :isInCollectionValue ;
 owl:minCardinality 1] .

:Collection rdf:type owl:Class ;
 rdfs:subClassOf kb:Resource ,
 [rdf:type owl:Restriction ;
 owl:onProperty :hasCollectionName ;
 owl:cardinality 1] .

:hasArtist rdf:type owl:ObjectProperty ;
 rdfs:label "Name of artist" ;
 kb:subjectClassConstraint :Painting ;
 kb:objectClassConstraint kb:TextValue .

:hasTitle rdf:type owl:ObjectProperty ;
 rdfs:label "Title of painting"
 kb:subjectClassConstraint :Painting ;
 kb:objectClassConstraint kb:TextValue .

:hasCollectionName rdf:type owl:ObjectProperty ;
 rdfs:label "Name of collection" ;
 kb:subjectClassConstraint :Collection ;
 kb:objectClassConstraint kb:TextValue .

To link the paintings to the collection, we must add a “link property”
to the ontology. In this case, the link property will point from a
painting to the collection it belongs to. Every link property must be a
subproperty of kb:hasLinkTo.

:isInCollection rdf:type owl:ObjectProperty ;
 rdfs:subPropertyOf kb:hasLinkTo ;
 kb:subjectClassConstraint :Painting ;
 kb:objectClassConstraint :Collection .

We must then add a “link value property”, which will point from a
painting to a kb:LinkValue (described in
LinkValue), which will contain metadata about the
link between the property and the collection. In particular, the link
value specifies the creator of the link, the date when it was created, and
the permissions that determine who can view or modify it. The name of
the link value property is constructed using a simple naming convention:
the word Value is appended to the name of the link property. In this
case, since our link property is called :isInCollection, the
link value property must be called :isInCollectionValue. Every link
value property must be a subproperty of kb:hasLinkToValue.

:isInCollectionValue rdf:type owl:ObjectProperty ;
 rdfs:subPropertyOf kb:hasLinkToValue ;
 kb:subjectClassConstraint :Painting ;
 kb:objectClassConstraint kb:LinkValue .

Given this ontology, we can create some RDF data describing a painting
and a collection:

@prefix paintings <http://www.knora.org/ontology/paintings#> .
@prefix data <http://www.knora.org/ontology/paintings/data#> .

data:dali_4587 rdf:type paintings:Painting ;
 paintings:hasTitle data:value_A ;
 paintings:hasArtist data:value_B .

data:value_A rdf:type kb:TextValue ;
 kb:valueHasString "The Persistence of Memory" .

data:value_B rdf:type kb:TextValue ;
 kb:valueHasString "Salvador Dali" .

data:pompidou rdf:type paintings:Collection ;
 paintings:hasCollectionName data:value_C .

data:value_C rdf:type kb:TextValue ;
 kb:valueHasString "Centre Pompidou, Paris" .

We can then state that the painting is in the collection:

data:dali_4587 paintings:isInCollection data:pompidou ;
 paintings:isinCollectionValue data:value_D .

data:value_D rdf:type kb:LinkValue ;
 rdf:subject data:dali_4587 ;
 rdf:predicate paintings:isInCollection ;
 rdf:object data:pompidou ;
 kb:valueHasRefCount 1 .

This creates a link (paintings:isInCollection) between the painting and the
collection, along with a reification containing metadata about the link.
We can visualise the result as the following graph:

[image: digraph { { // Resources node [style = filled, fontcolor = white, color = navy, fillcolor = slateblue4] work [label = "dali_4587"] collection [label = "pompidou"] } { // Values node [style = filled, fontcolor = white, color = tomato3, fillcolor = tomato2] title [label = "value_A"] artistName [label = "value_B"] collectionName [label = "value_C"] linkValue [label = "value_D"] } { // Literals node [shape = box, color = firebrick] titleStr [label = "‘The Persistence of Memory’"] artistNameStr [label = "‘Salvador Dali’"] isInCollection [label = "isInCollection"] refCount [label = "1"] collectionNameStr [label = "‘Centre Pompidou’"] } edge [fontsize = 11, color = cyan4] work -> title [label = "hasTitle"] work -> artistName [label = "hasArtist"] work -> collection [label = "isInCollection"] work -> linkValue [label = "isInCollectionValue"] collection -> collectionName [label = "hasCollectionName"] title -> titleStr [label = "valueHasString"] artistName -> artistNameStr [label = "valueHasString"] collectionName -> collectionNameStr [label = "valueHasString"] linkValue -> refCount [label = "valueHasRefCount"] linkValue -> work [label = "subject"] linkValue -> isInCollection [label = "predicate"] linkValue -> collection [label = "object"] }]

The Knora API server allows a user to see a link if
the requesting user has permission to see the source and target resources
as well as the kb:LinkValue.

Text with Standoff Markup

Knora is designed to be able to store text with markup, which can
indicate formatting and structure, as well as the complex observations
involved in transcribing handwritten manuscripts. One popular way of
representing text in the humanities is to encode it in XML
using the Text Encoding Initiative (TEI [http://www.tei-c.org/release/doc/tei-p5-doc/en/html/index.html]) guidelines. [2] In Knora, a
TEI/XML document can be stored as a file with attached metadata, but
this is not recommended, because it does not allow Knora to perform
searches across multiple documents.

The recommended way to store text with markup in Knora is to use
Knora’s built-in support for “standoff” markup, which is stored
separately from the text. This has some advantages over embedded markup
such as XML. [3] While XML requires markup to have a hierarchical
structure, and does not allow overlapping tags, standoff nodes do not
have these limitations(Schmidt2016). A standoff tag can be attached to
any substring in the text by giving its start and end positions. [4]
For example, suppose we have the following text:

This sentence has overlapping visual attributes.
This would require just two standoff tags: (italic, start=5, end=29)
and (bold, start=14, end=36).

Moreover, standoff makes it possible to mark up the same text in
different, possibly incompatible ways, allowing for different
interpretations without making redundant copies of the text. In the
Knora base ontology, any text value can have standoff tags.

By representing standoff as RDF triples, Knora makes markup searchable
across multiple text documents in a repository. For example, if a
repository contains documents in which references to persons are
indicated in standoff, it is straightforward to find all the documents
mentioning a particular person. Knora’s standoff support is intended to
make it possible to convert documents with embedded, hierarchical
markup, such as TEI/XML, into RDF standoff and back again, with no data
loss, thus bringing the benefits of RDF to existing TEI-encoded
documents.

In the Knora base ontology, a TextValue can have one or more
standoff tags. Each standoff tag indicates the start and end positions
of a substring in the text that has a particular attribute. The OWL
class kb:StandoffTag, which is the base class of all standoff node
classes, has these properties:

	standoffTagHasStart (1)

	The index of the first character in the text that has the attribute.

	standoffTagHasEnd (1)

	The index of the last character in the text that has the attribute,
plus 1.

	standoffTagHasUUID (1)

	A UUID identifying this instance and those corresponding to it
in later versions of the TextValue it belongs to. The UUID is a means
to maintain a reference to a particular range of a text also when new versions
are made and standoff tag IRIs change.

	standoffTagHasOriginalXMLID (0-1)

	The original id of the XML element that the standoff tag represents, if any.

	standoffTagHasStartIndex (1)

	The start index of the standoff tag. Start indexes are numbered from 0 within the context of a
particular text. When several standoff tags share the same start position,
they can be nested correctly with this information when transforming them to XML.

	standoffTagHasEndIndex (1)

	The end index of the standoff tag. Start indexes are numbered from 0 within the context of a
particular text. When several standoff tags share the same end position,
they can be nested correctly with this information when transforming them to XML.

	standoffTagHasStartParent (0-1)

	Points to the parent standoff tag. This corresponds to the original nesting of tags in XML.
If a standoff tag has no parent, it represents the XML root element.
If the original XML element is a CLIX tag, it represents the start
of a virtual (non syntactical) hierarchy.

	standoffTagHasEndParent (0-1)

	Points to the parent standoff tag if the original XML element is a CLIX tag and represents the end
of a virtual (non syntactical) hierarchy.

The StandoffTag class is not used directly in RDF data; instead, its
subclasses are used. A few subclasses are currently provided in standoff-onto.ttl, and more
will be added to support TEI semantics. Projects are able to define their own custom standoff tag
classes (direct subclasses of StandoffTag or one of the standoff data type classes or subclasses
of one of the standoff classes defined in standoff-onto.ttl).

Subclasses of StandoffTag

Standoff Data Type Tags

Associates data in some Knora value type with a substring in a text. Standoff data type
tags are subclasses of ValueBase classes.

	
	StandoffLinkTag Indicates that a substring refers to another kb:Resource.

	See StandoffLinkTag.

	
	StandoffInternalReferenceTag Indicates that a substring refers to another standoff tag in the same text

	value. See Internal Links in a TextValue.

	
	StandoffUriTag Indicates that a substring is associated with a

	URI, which is stored in the same form that is used for kb:UriValue. See UriValue.

	
	StandoffDateTag Indicates that a substring represents a

	date, which is stored in the same form that is used for kb:DateValue. See DateValue.

	
	StandoffColorTag Indicates that a substring represents a color,

	which is stored in the same form that is used for kb:ColorValue. See ColorValue.

	
	StandoffIntegerTag Indicates that a substring represents an integer,

	which is stored in the same form that is used for kb:IntegerValue. See IntValue.

	
	StandoffDecimalTag Indicates that a substring represents a number with fractions,

	which is stored in the same form that is used for kb:DecimalValue. See DecimalValue.

	
	StandoffIntervalTag Indicates that a substring represents an interval,

	which is stored in the same form that is used for kb:IntervalValue. See IntervalValue.

	
	StandoffBooleanTag Indicates that a substring represents a Boolean,

	which is stored in the same form that is used for kb:BooleanValue. See BooleanValue.

StandoffLinkTag

A StandoffLinkTag Indicates that a substring is associated with a
Knora resource. For example, if a repository contains resources
representing persons, a text could be marked up so that each time a
person’s name is mentioned, a StandoffLinkTag connects the name to
the Knora resource describing that person. Property:

	standoffTagHasLink (1)

	The IRI of the resource that is referred to.

One of the design goals of the Knora ontology is to make it easy and
efficient to find out which resources contain references to a given
resource. Direct links are easier and more efficient to query than
indirect links. Therefore, when a text value contains a resource
reference in its standoff nodes, the Knora API server automatically
creates a direct link between the containing resource and the target
resource, along with an RDF reification (a kb:LinkValue) describing
the link, as discussed in Links Between Resources. In this case, the link
property is always kb:hasStandoffLinkTo, and the link value property
(which points to the LinkValue) is always
kb:hasStandoffLinkToValue.

The Knora API server automatically updates direct links and reifications
for standoff resource references when text values are updated. To do
this, it keeps track of the number of text values in each resource that
contain at least one standoff reference to a given target resource. It
stores this number as the reference count of the LinkValue (see
LinkValue) describing the direct link. Each time
this number changes, it makes a new version of the LinkValue, with
an updated reference count. When the reference count reaches zero, it
removes the direct link and makes a new version of the LinkValue,
marked with kb:isDeleted.

For example, if data:R1 is a resource with a text value in which the
resource data:R2 is referenced, the repository could contain the
following triples:

data:R1 ex:hasComment data:V1 .

data:V1 rdf:type kb:TextValue ;
 kb:valueHasString "This link is internal." ;
 kb:valueHasStandoff data:SO1 .

data:SO1 rdf:type kb:StandoffLinkTag ;
 kb:standoffTagHasStart: 5 ;
 kb:standoffTagHasEnd: 9 ;
 kb:standoffTagHasLink data:R2 .

data:R1 kb:hasStandoffLinkTo data:R2 .
data:R1 kb:hasStandoffLinkToValue data:LV1 .

data:LV1 rdf:type kb:LinkValue ;
 rdf:subject data:R1 ;
 rdf:predicate kb:hasStandoffLinkTo ;
 rdf:object data:R2 ;
 kb:valueHasRefCount 1 .

The result can be visualized like this:

[image: digraph { { // Resources node [style = filled, fontcolor = white, color = navy, fillcolor = slateblue4] r1 [label = "R1"] r2 [label = "R2"] } { // Values node [style = filled, fontcolor = white, color = tomato3, fillcolor = tomato2] v1 [label = "V1"] lv1 [label = "LV1"] } // Standoff tag so1 [label = "SO1", style = filled, fontcolor = white, color = darkgreen, fillcolor = forestgreen] { // Literals node [shape = box, color = firebrick] v1Str [label = "‘This link is internal.’"] tagStart [label = "5"] tagEnd [label = "9"] hasStandoffLinkTo [label = "hasStandoffLinkTo"] refCount [label = "1"] } edge [fontsize = 11, color = cyan4] r1 -> r2 [label = "hasStandoffLinkTo"] r1 -> v1 [label = "hasComment"] r1 -> lv1 [label = "hasStandoffLinkToValue"] v1 -> v1Str [label = "valueHasString"] v1 -> so1 [label = "valueHasStandoff"] so1 -> tagStart [label = "standoffTagHasStart"] so1 -> tagEnd [label = "standoffTagHasEnd"] so1 -> r2 [label = "standoffTagHasLink"] lv1 -> r1 [label = "subject"] lv1 -> hasStandoffLinkTo [label = "predicate"] lv1 -> r2 [label = "object"] lv1 -> refCount [label = "valueHasrefCount"] // Add an invisible edge to order tagStart and tagEnd from left to right. { rank = same tagStart -> tagEnd [style = invis] rankdir = LR } }]

Link values created automatically for resource references in standoff
are visible to all users, and the creator of these link values
is always kb:SystemUser (see Users and Groups).
The Knora API server allows a user to see a standoff link if the user
has permission to see the source and target resources.

Internal Links in a TextValue

Internal links in a TextValue can be using the data type standoff class StandoffInternalReferenceTag or a subclass of it.
It has the following property:

	standoffTagHasInternalReference (1)

	Points to a StandoffTag that belongs to the same TextValue.
It has an objectClassConstraint of StandoffTag.

For links to a kb:Resource, see StandoffLinkTag.

Mapping to Create Standoff From XML

A mapping allows for the conversion of an XML document to RDF-standoff
and back. A mapping defines one-to-one relations between XML elements (with or without a class) and attributes
and standoff classes and properties (see XML to Standoff Mapping).

A mapping is represented by a kb:XMLToStandoffMapping which contains one or more kb:MappingElement.
A kb:MappingElement maps an XML element (including attributes) to a standoff class and standoff properties.
It has the following properties:

	mappingHasXMLTagname (1)

	The name of the XML element that
is mapped to a standoff class.

	mappingHasXMLNamespace (1)

	The XML namespace of the XML element that
is mapped to a standoff class. If no namespace is given, noNamespace is used.

	mappingHasXMLClass (1)

	The name of the class of the XML element. If it has no class,
noClass is used.

	mappingHasStandoffClass (1)

	The standoff class the XML element is mapped to.

	mappingHasXMLAttribute (0-n)

	Maps XML attributes to standoff properties using MappingXMLAttribute. See below.

	mappingHasStandoffDataTypeClass (0-1)

	Indicates the standoff data type class
of the standoff class the XML element is mapped to.

	mappingElementRequiresSeparator (1)

	Indicates if there should be an invisible word separator inserted
after the XML element in the RDF-standoff representation. Once the markup is stripped, text segments that
belonged to different elements may be concatenated.

A MappingXMLAttribute has the following properties:

	mappingHasXMLAttributename

	The name of the XML attribute that is mapped to a standoff property.

	mappingHasXMLNamespace

	The namespace of the XML attribute that is mapped to a standoff property.
If no namespace is given, noNamespace is used.

	mappingHasStandoffProperty

	The standoff property the XML attribute is mapped to.

Knora includes a standard mapping used by the SALSAH GUI. It has the IRI http://data.knora.org/projects/standoff/mappings/StandardMapping and defines
mappings for a few elements used to write texts with simple markup (see XML to Standoff Mapping).

Standoff in Digital Editions

Knora’s standoff is designed to make it possible to convert XML
documents to standoff and back. One application for this feature is an
editing workflow in which an editor works in an XML editor, and the
resulting XML documents are converted to standoff and stored in Knora,
where they can be searched and annotated.

If an editor wants to correct text that has been imported from XML into
standoff, the text can be exported as XML, edited, and imported again.
To preserve annotations on standoff tags across edits, each tag can
automatically be given a UUID. In a future version of the Knora base
ontology, it will be possible to create annotations that point to UUIDs
rather than to IRIs. When a text is exported to XML, the UUIDs can be
included in the XML. When the edited XML is imported again, it can be
converted to new standoff tags with the same UUIDs. Annotations that
applied to standoff tags in the previous version of the text will
therefore also apply to equivalent tags in the new version.

When text is converted from XML into standoff, tags are also given
indexes, which are numbered from 0 within the context of a particular
text. This makes it possible to order tags that share the same position,
and to preserve the hierarchy of the original XML document. An ordinary,
hierarchical XML tag is converted to a standoff tag that has one index,
as well as the index of its parent tag, if any. The Knora base ontology
also supports non-hierarchical markup such as CLIX [http://conferences.idealliance.org/extreme/html/2004/DeRose01/EML2004DeRose01.html#t6], which
enables overlapping markup to be represented in XML. When
non-hierarchical markup is converted to standoff, both the start
position and the end position of the standoff tag have indexes and
parent indexes.

To support these features, a standoff tag can have these additional
properties:

	standoffTagHasStartIndex (0-1)

	The index of the start position.

	standoffTagHasEndIndex (0-1)

	The index of the end position, if this is a non-hierarchical tag.

	standoffTagHasStartParent (0-1)

	The IRI of the tag, if any, that contains the start position.

	standoffTagHasEndParent (0-1)

	The IRI of the tag, if any, that contains the end position, if
this is a non-hierarchical tag.

	standoffTagHasUUID (0-1)

	A UUID that can be used to annotate a standoff tag that may be
present in different versions of a text, or in different layers of a
text (such as a diplomatic transcription and an edited critical
text).

Querying Standoff in SPARQL

A future version of the Knora API server will provide an API for querying standoff markup.
In the meantime, it is possible to query it directly in SPARQL. For example, here is a
SPARQL query (using RDFS inference) that finds all the text values texts that have a standoff
date tag referring to Christmas Eve 2016, contained in a StandoffItalicTag:

PREFIX knora-base: <http://www.knora.org/ontology/knora-base#>
PREFIX standoff: <http://www.knora.org/ontology/standoff#>

select * where {
 ?standoffTag a knora-base:StandoffDateTag .

 ?standoffTag knora-base:valueHasStartJDN ?dateStart .
 ?standoffTag knora-base:valueHasEndJDN ?dateEnd .

 FILTER (2457747 <= ?dateEnd && 2457747 >= ?dateStart)

 ?standoffTag knora-base:standoffTagHasStartParent ?parent .
 ?parent a standoff:StandoffItalicTag .

 ?textValue knora-base:valueHasStandoff ?standoffTag .
 ?textValue knora-base:valueHasString ?string .

 ?standoffTag knora-base:standoffTagHasStart ?startPos .
 ?standoffTag knora-base:standoffTagHasEnd ?endPos .
}

Authorization

Users and Groups

Each Knora user is represented by an object belonging to the class
kb:User, which is a subclass of foaf:Person, and has the
following properties:

	userid (1)

	A unique identifier that the user must provide when logging in.

	password (1)

	A cryptographic hash of the user’s password.

	email (0-n)

	Email addresses belonging to the user.

	isInProject (0-n)

	Projects that the user is a member of.

	isInGroup (0-n)

	Project-specific groups that the user is a member of.

	foaf:familyName (1)

	The user’s family name.

	foaf:givenName (1)

	The user’s given name.

Knora’s concept of access control is that an object (a resource or
value) can grant permissions to groups of users (but not to individual
users). There are four built-in groups:

	UnknownUser

	Any user who has not logged into the Knora API server is
automatically assigned to this group.

	KnownUser

	Any user who has logged into the Knora API server is automatically
assigned to this group.

	ProjectMember

	When checking a user’s permissions on an object, the user is
automatically assigned to this group if she is a member of the
project that the object belongs to.

	Creator

	When checking a user’s permissions on an object, the user is
automatically assigned to this group if he is the creator of the
object.

A project-specific ontology can define additional groups, which must
belong to the OWL class kb:UserGroup.

There is one built-in SystemUser, which is the creator of link values
created automatically for resource references in standoff markup (see
StandoffLinkTag).

Permissions

An object can grant the following permissions, which are stored in a
compact format in a single string. This string is the object of the predicate
kb:hasPermissions, which is required on every kb:Resource and
kb:Value.

	Restricted view permission (RV) Allows a restricted view of
the object, e.g.a view of an image with a watermark.

	View permission (V) Allows an unrestricted view of the
object. Having view permission on a resource only affects the user’s
ability to view information about the resource other than its values.
To view a value, she must have view permission on the value itself.

	Modify permission (M) For values, this permission allows a
new version of a value to be created. For resources, this allows the
user to create a new value (as opposed to a new version of an
existing value), or to change information about the resource other
than its values. When he wants to make a new version of a value, his
permissions on the containing resource are not relevant. However,
when he wants to change the target of a link, the old link must be
deleted and a new one created, so he needs modify permission on the
resource.

	Delete permission (D) Allows the item to be marked as
deleted.

	Change rights permission (CR) Allows the permissions granted
by the object to be changed.

Each permission in the above list implies all lower-numbered
permissions. A user’s permission level on a particular object is
calculated in the following way:

	Make a list of the groups that the user belongs to, including
Creator and/or ProjectMember if applicable.

	Make a list of the permissions that she can obtain on the
object, by iterating over the permissions that the object grants. For
each permission, if she is in the specified group, add the specified
permission to the list of permissions she can obtain.

	From the resulting list, select the highest-level permission.

	If the result is that she would have no permissions, give her
whatever permission UnknownUser would have.

To view a link between resources, a user needs permission to view the
source and target resources. He also needs permission to view the
LinkValue representing the link, unless the link property is
hasStandoffLinkTo (see StandoffLinkTag).

The format of the object of kb:hasPermissions is as follows:

	Each permission is represented by the one-letter or two-letter
abbreviation given above.

	Each permission abbreviation is followed by a space, then a
comma-separated list of groups that the permission is granted to.

	The IRIs of built-in groups are shortened using the knora-base
prefix.

	Multiple permissions are separated by a vertical bar (|).

For example, if an object grants view permission to unknown and known
users, and modify permission to project members, the resulting
permission literal would be:

V knora-base:UnknownUser,knora-base:KnownUser|M knora-base:ProjectMember

Consistency Checking

Knora tries to enforce repository consistency by checking constraints
that are specified in the Knora base ontology and in project-specific
ontologies. Three types of consistency rules are enforced:

	Cardinalities in OWL class definitions must be satisfied.

	Constraints on the types of the subjects and objects of OWL object
properties must be satisfied.

	A datatype property may not have an empty string as an object.

The implementation of consistency checking is partly
triplestore-dependent; Knora may be able to provide stricter checks with
some triplestores than with others.

OWL Cardinalities

As noted in Resources, each subclass of Resource
must use OWL cardinality restrictions to specify the properties it can
have. More specifically, a resource is allowed to have a property that
is a subproperty of kb:hasValue or kb:hasLinkTo only if the
resource’s class has some cardinality for that property. Similarly, a
value is allowed to have a subproperty of kb:valueHas only if the
value’s class has some cardinality for that property.

Knora supports, and attempts to enforce, the following cardinality
constraints:

	owl:cardinality 1

	A resource of this class must have exactly one instance of the
specified property.

	owl:minCardinality 1

	A resource of this class must have at least one instance of the
specified property.

	owl:maxCardinality 1

	A resource of this class may have zero or one instance of the
specified property.

	owl:minCardinality 0

	A resource of this class may have zero or more instances of the
specified property.

Knora requires cardinalities to be defined using blank nodes, as in the
following example from knora-base:

:Representation rdf:type owl:Class ;
 rdfs:subClassOf :Resource ,
 [rdf:type owl:Restriction ;
 owl:onProperty :hasFileValue ;
 owl:minCardinality "1"^^xsd:nonNegativeInteger] .

:StillImageRepresentation rdf:type owl:Class ;
 rdfs:subClassOf :Representation ,
 [rdf:type owl:Restriction ;
 owl:onProperty :hasStillImageFileValue ;
 owl:minCardinality "1"^^xsd:nonNegativeInteger] .

A resource class inherits cardinalities from its superclasses. This follows
from the rules of RDFS [http://www.w3.org/TR/2014/REC-rdf-schema-20140225/] inference. Also, in Knora, cardinalities in the
subclass can override cardinalities that would otherwise be inherited from the
superclass. Specifically, if a superclass has a cardinality on a property P,
and a subclass has a cardinality on a subproperty of P, the subclass’s
cardinality overrides the superclass’s cardinality. In the example above,
hasStillImageFileValue is a subproperty of hasFileValue. Therefore,
the cardinality on hasStillImageFileValue overrides (i.e. replaces) the
one on hasFileValue.

Note that, unlike cardinalities, predicates of properties are not inherited.
If :foo rdfs:subPropertyOf :bar, this does not mean that :foo inherits
anything from :bar. Any predicates of :foo that are also needed by
:bar must be defined explicitly on :bar. This design decision was made
because property predicate inheritance is not provided by RDFS inference,
and would make it more difficult to check the correctness of ontologies, while
providing little practical benefit.

For more information about OWL cardinalities, seethe OWL 2 Primer [http://www.w3.org/TR/2012/REC-owl2-primer-20121211/].

Constraints on the Types of Property Subjects and Objects

When a project-specific ontology defines a property, it must indicate
the types that are allowed as objects (and, if possible, as subjects) of the property. This
is done using the following Knora-specific properties:

	subjectClassConstraint

	Specifies the class that subjects of the property must belong to.
This constraint is recommended but not required. Knora will attempt
to enforce this constraint.

	objectClassConstraint

	If the property is an object property, specifies the class that
objects of the property must belong to. Every subproperty of
kb:hasValue or a kb:hasLinkTo (i.e. every property of a
resource that points to a kb:Value or to another resource) is
required to have this constraint, because the Knora API server relies
on it to know what type of object to expect for the property. Knora
will attempt to enforce this constraint.

	objectDatatypeConstraint

	If the property is a datatype property, specifies the type of
literals that can be objects of the property. Knora will not attempt
to enforce this constraint, but it is useful for documentation
purposes.

Consistency Constraint Example

A project-specific ontology could define consistency constraints as in
this simplified example:

:book rdf:type owl:Class ;
 rdfs:subClassOf knora-base:Resource ,
 [rdf:type owl:Restriction ;
 owl:onProperty :hasTitle ;
 owl:cardinality "1"^^xsd:nonNegativeInteger] ,
 [rdf:type owl:Restriction ;
 owl:onProperty :hasAuthor ;
 owl:minCardinality "0"^^xsd:nonNegativeInteger] .

:hasTitle rdf:type owl:ObjectProperty ;
 knora-base:subjectClassConstraint :book ;
 knora-base:objectClassConstraint knora-base:TextValue .

:hasAuthor rdf:type owl:ObjectProperty ;
 knora-base:subjectClassConstraint :book ;
 knora-base:objectClassConstraint knora-base:TextValue .

Open Questions

Extending Existing Resource Definitions

How should extensions of existing resources be handled? Project B
extends a resource defined in the project A ontology, by adding new
properties/values which are interesting for project B.

Notes

	[1]	http://www.knora.org/ontology/knora-base#

	[2]	TEI refers both to an organization and an XML-based markup language
(or more precisely: a set of grammar modules – XML schemas – that can
be combined to define a markup language). For reasons of clarity, we
use the term TEI/XML to refer to the markup language.

	[3]	It is also possible to encode standoff markup using XML. For example,
the TEI guidelines discuss standoff markup. However, standoff markup
is not widely applied in the TEI community. TEI’s main focus is on
encoding a hierarchy of elements.

	[4]	Unlike in corpus linguistics, we do not use any tokenization
resulting in a form of predefined segmentation that would limit the
user’s possibility to freely annotate any ranges in the text.

References

	[Schmidt2016]	Schmidt, Desmond. 2016.
“Using Standoff Properties for Marking-up Historical Documents in the Humanities.”
It – Information Technology 58: 1.
http://ecdosis.net/papers/schmidt.d.2016.pdf.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

The Knora API Server

The Knora API server implements Knora’s HTTP-based API, and manages data
stored in an RDF triplestore and in files. It is designed to work with any
standards-compliant RDF triplestore, and is configured to work out of the box
with Ontotext GraphDB [http://ontotext.com/products/graphdb/] and Apache Jena [https://jena.apache.org/].

	Deploying the Knora API Server
	Getting Started with the Knora API Server

	Using HTTPS in the Knora API Server

	Running the Knora API Server on a Production System

	Knora API Server Design Documentation
	Knora API Server Design Overview

	Futures with Akka

	HTTP Module

	Responders Module

	Store Module

	Shared Packages

	How to Add an API Route

	Triplestore Updates

	Consistency Checking

	Authentication in the Knora API Server

	Administration (Users, Projects, Groups, Institutions, Permissions)

	Plans for Knora API v2

	Developing the Knora API Server
	Overview

	Starting Fuseki 3

	Starting GraphDB-SE

	Build Process

	Setup IntelliJ for development of Knora

	Documentation Guidelines

	Test Tags

	Testing with Fuseki 2

	Docker Cheat Sheet

	Using API V1
	Introduction: Using API V1

	Reading and Searching Resources

	XML to Standoff Mapping

	Adding Resources

	Reading Values

	Adding a Value

	Changing a Value

	Deleting Resources and Values

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

Deploying the Knora API Server

	Getting Started with the Knora API Server
	Choosing and Setting Up a Triplestore

	Creating a Test Installation

	Transforming Data When Ontologies Change

	Using HTTPS in the Knora API Server
	Enabling HTTPS

	Creating a Self-Signed Certificate for Testing

	Configuring the SALSAH GUI to Connect to the Knora API Server over HTTPS

	Running the Knora API Server on a Production System
	Creating and running the distribution package

	Running a supported triplestore

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Deploying the Knora API Server

Getting Started with the Knora API Server

Choosing and Setting Up a Triplestore

The Knora API server requires a standards-compliant RDF [https://www.w3.org/TR/rdf11-primer/] triplestore. A number
of triplestore implementations are available, including free software [http://www.gnu.org/philosophy/free-sw.en.html] as
well as proprietary options. The Knora API server is tested and configured to
work out of the box with the following triplestores:

	Ontotext GraphDB [http://ontotext.com/products/graphdb/], a high-performance, proprietary triplestore. The Knora
API server is tested with GraphDB Standard Edition and GraphDB Free (which
is proprietary but available free of charge).

	Apache Jena [https://jena.apache.org/], which is free software [http://www.gnu.org/philosophy/free-sw.en.html]. Knora comes bundled with Jena and with
its standalone SPARQL server, Fuseki.

See the chapters on Starting Fuseki 3 and Starting GraphDB-SE for more details.

Creating Repositories and Loading Test Data

To create a test repository called knora-test and load test data into it,
go to webapi/scripts and run the script for the triplestore you have
chosen.

	For Fuseki, run fuseki-load-test-data.sh.

	
	For GraphDB:

	
	If you are running GraphDB directly from its installation directory (using its graphdb script), run graphdb-se-local-init-knora-test.sh.

	If you are running GraphDB from a Docker image, run graphdb-se-docker-init-knora-test.sh.

You can create your own scripts based on these scripts, to create new
repositories and optionally to load existing Knora-compliant RDF data into
them.

If you are using GraphDB, you must create your repository using a repository
configuration file that specifies the file KnoraRules.pie as its
owlim:ruleset. This enables RDFS inference and Knora-specific consistency
rules. When using GraphDB, the Knora API server uses RDFS inference to improve
query performance. The Knora-specific consistency rules help ensure that your
data is internally consistent and conforms to the Knora ontologies.

When testing with GraphDB, you may sometimes get an error when loading the
test data that says that there are multiple IDs for the same repository
knora-test. In that case, something went wrong when dropping and
recreating the repository. You can solve this by deleting the repository
manually and starting over. Make sure you don’t delete important data. To
delete the repository, stop GraphDB, delete the data directory in your
GraphDB installation, and restart GraphDB.

Creating a Test Installation

TODO: write subsections like this:

	Download the Knora API Server and Sipi from GitHub

	Configure

	Run

Transforming Data When Ontologies Change

When there is a change in Knora’s ontologies or in a project-specific ontology, it may be necessary to update existing
data to conform to the new ontology. This can be done directly in SPARQL, but for simple transformations, Knora
includes a command-line program that works on RDF data files in Turtle [https://www.w3.org/TR/turtle/] format. You can run it from SBT:

> run-main org.knora.webapi.util.TransformData --help
[info] Running org.knora.webapi.util.TransformData --help
[info]
[info] Updates the structure of Knora repository data to accommodate changes in Knora.
[info]
[info] Usage: org.knora.webapi.util.TransformData -t [deleted|permissions|strings|standoff|all] input output
[info]
[info] -t, --transform <arg> Selects a transformation. Available transformations:
[info] 'deleted' (adds missing 'knora-base:isDeleted'
[info] statements), 'permissions' (combines old-style
[info] multiple permission statements into single permission
[info] statements), 'strings' (adds missing valueHasString),
[info] 'standoff' (transforms old-style standoff into
[info] new-style standoff), 'creator' (transforms existing
[info] 'knora-base:Owner' group inside permissions to
[info] 'knora-base:Creator'), 'owner' (gives
[info] 'knora-base:Creator' CR permissions to correspond to
[info] the previous behaviour for owners - use with care as
[info] it will add permissions that where not there before),
[info] 'all' (all of the above minus 'owner')
[info] --help Show help message
[info]
[info] trailing arguments:
[info] input (required) Input Turtle file
[info] output (required) Output Turtle file

The currently available transformations are:

	deleted

	Adds knora-base:isDeleted false to resources and values that don’t have a knora-base:isDeleted
predicate.

	permissions

	Combines old-style permission statements (hasViewPermission, hasModifyPermission, etc.) into
one hasPermissions statement per resource or value, as described in the section Permissions in
The Knora Ontologies.

	strings

	Adds missing valueHasString statements to Knora value objects.

	standoff

	Transforms old-style standoff markup (containing tag names as strings) to new-style standoff markup
(using different OWL class names for different tags).

	creator

	Transforms existing knora-base:Owner group inside permissions to knora-base:Creator.

	owner

	Gives knora-base:Creator CR permissions to correspond to the previous behaviour for owners.
Use with care as it will add permissions that where not there before.

	all

	Runs all of the above transformations.

Transformations that are not needed have no effect, so it is safe to use -t all.

The program uses the Turtle parsing and formatting library from RDF4J [http://rdf4j.org/]. Additional transformations can
be implemented as subclasses of org.eclipse.rdf4j.rio.RDFHandler.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Deploying the Knora API Server

Using HTTPS in the Knora API Server

	Enabling HTTPS

	Creating a Self-Signed Certificate for Testing
	Configuring A Web Browser to Accept a Self-Signed Certificate
	Chrome

	Firefox

	Configuring the SALSAH GUI to Connect to the Knora API Server over HTTPS

Enabling HTTPS

The Knora API server can be configured to accept requests over HTTP, HTTPS, or
both. In the app.http section of application.conf, the relevant
configuration options look like this by default:

https {
 keystore = "https/localhost.jks"
 keystore-password = "test keystore password"
}

knora-api {
 host = "localhost"
 http-port = 3333
 https-port = 3334
 use-http = true
 use-https = false
}

On a production system, you should enable HTTPS and disable HTTP, to protect
passwords and other private data from being intercepted in transit.

To enable HTTPS, you will need an SSL/TLS certificate, signed by a certificate
authority (CA) and stored in a Java KeyStore (JKS) file. For information on
storing a certificate in a JKS file, see the Oracle keytool documentation [https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html].
Once you have a JKS, you can configure the Knora API Server to load it by
changing the https configuration in application.conf. You can then set
use-https to true. The HTTP and HTTPS ports can be any ports you
choose.

Creating a Self-Signed Certificate for Testing

For testing purposes, you can create your own CA and self-signed certificate.
Open a terminal in the Knora source directory
webapi/src/main/resources/https, and type:

$./generate-test-ca.sh
$./generate-test-cert.sh

This will create a CA, then create an SSL/TLS certificate signed by the CA, in
the file localhost.jks, matching the https configuration in
application.conf shown above. You can then set use-https to true.

Configuring A Web Browser to Accept a Self-Signed Certificate

If you are using a self-signed certificate, you must configure your web
browser to accept it.

Chrome

To configure the Chrome browser to accept self-signed certificates for
localhost, type this in the location bar:

chrome://flags/#allow-insecure-localhost

Click on Enable to enable the option, then restart the browser.

Firefox

Make a request to the API server over HTTPS by typing a Knora API URL into
the browser’s location bar, e.g.:

https://localhost:3334/v1/resources/http%3A%2F%2Fdata.knora.org%2Fc5058f3a

Firefox will say that your connection is not secure. Click Advanced, then
Add Exception, then Confirm Security Exception.

Configuring the SALSAH GUI to Connect to the Knora API Server over HTTPS

In the file salsah/src/public/js/00_init_javascript.js, change the value
of the variable API_URL to specify https instead of http, along
with the HTTPS port configured in the Knora API server’s application.conf.
For example:

var API_URL = 'https://localhost:3334';

Note that this only affects the communication between the SALSAH GUI and the
Knora API server. On a production system, you should also use a web server
that serves the SALSAH GUI itself over HTTPS, to protect private data from
being intercepted in transit. You must then set http.salsah.base-url in
application.conf to the base HTTPS URL of the SALSAH GUI.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Deploying the Knora API Server

Running the Knora API Server on a Production System

	Creating and running the distribution package

	Running a supported triplestore

This section describes possible ways of running the Knora API server in
an production environment. The description should only be taken as a first
short introduction to this topic. Further reading of the referenced materials
is advised.

Note

Our platform of choice is Linux CentOS 7 and is thus assumed in the
description. The general idea should be usable on all platforms with
small changes.

To run the Knora API server, we have two main components. First, the zipped
distribution of the server and second a supported triplestore.

Creating and running the distribution package

Inside the knora/webapi folder run the following sbt commands:

`
$ sbt packageBin
`

This will create a zip file inside the knora/webapi/target/universal folder.
To run the Knora API Server, unzip this package, and execute the webapi script
inside the bin folder.

Alternatively, the command sbt stage will create a folder with the same content as before,
but will skip the zipping step.

Running a supported triplestore

See the chapters on Starting Fuseki 3 and Starting GraphDB-SE on how
to start a supported triplestore.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

Knora API Server Design Documentation

	Knora API Server Design Overview
	Introduction

	Design Diagram

	Modules

	Actor Supervision and Creation

	Concurrency

	What the Responders Do

	Store Module (org.knora.webapi.store package)

	Triplestore Access

	Error Handling

	API Routing

	JSON

	Futures with Akka
	Introduction

	Handling Errors with Futures

	Using recover on Futures

	Designing with Futures

	Mixing Futures with non-Futures

	How to Write For-Comprehensions

	Execution Contexts

	HTTP Module

	Responders Module
	Version 1.0 Responders

	Store Module
	Overview

	Lifecycle

	HTTP-based Triplestores

	Embedded Triplestores

	Shared Packages

	How to Add an API Route
	Write SPARQL templates

	Write Responder Request and Response Messages

	Write a Responder

	Write a Route

	Triplestore Updates
	Requirements

	Design

	SPARQL Update Examples

	Consistency Checking
	Requirements

	Design

	Authentication in the Knora API Server
	Scope

	Implementation

	Usage

	Administration (Users, Projects, Groups, Institutions, Permissions)
	Scope

	Implementation

	Overview

	Permissions

	Implicit Permissions

	Permission Templates

	Default Permissions Matrix for new Projects

	Basic Workflows involving Permissions

	Implementation

	Use Cases

	Webapi Components

	Redesign / Questions June 2016

	Plans for Knora API v2
	Naming

	Structure

	Redundancy

	Efficiency

	Suitability for non-GUI applications

	Working with multiple projects

	Annotating values

	Typing

	JSON-LD

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Knora API Server Design Documentation

Knora API Server Design Overview

	Introduction

	Design Diagram

	Modules
	HTTP Module

	Responders Module

	Store Module

	Shared Between Modules

	Actor Supervision and Creation

	Concurrency

	What the Responders Do

	Store Module (org.knora.webapi.store package)

	Triplestore Access

	Error Handling
	Transformation of Exception to Client Responses

	API Routing

	JSON

Introduction

The Knora API server implements Knora’s web-based Application Programming Interface (API). It is responsible
for receiving HTTP requests from clients (which may be web browsers or other software), performing
authentication and authorisation, querying and updating the RDF triplestore, transforming the
results of SPARQL queries into Knora API responses, and returning these responses to the client.
It is written in Scala [http://www.scala-lang.org/], using the Akka [http://akka.io/] framework for message-based concurrency. It is designed to work with any
standards-compliant triplestore. It can communicate with triplestores either via the SPARQL 1.1 Protocol [http://www.w3.org/TR/sparql11-protocol/] or by
embedding the triplestore in the API server as a library.

Design Diagram

[image: design-diagram]
A high-level diagram of the Knora API server.

Modules

HTTP Module

	org.knora.webapi.http

	org.knora.webapi.routes

Responders Module

	org.knora.webapi.responders

Store Module

	org.knora.store

Shared Between Modules

	org.knora.webapi

	org.knora.webapi.util

	org.knora.webapi.messages

Actor Supervision and Creation

At system start, the supervisor actors are created in KnoraService.scala:

val responderManager = system.actorOf(Props(new ResponderManagerV1 with LiveActorMaker), name = "responderManager")
val storeManager = system.actorOf(Props(new StoreManager with LiveActorMaker), name = "storeManager")

Each supervisor creates and maintains a pool of workers, with an Akka
router [http://doc.akka.io/docs/akka/snapshot/scala/routing.html]
that dispatches messages to the workers according to some strategy. For
now, all the pools use the ‘round-robin’ strategy. The pools and routers
are configured in application.conf:

actor {
 deployment {
 user/storeManager/triplestoreRouter {
 router = round-robin-pool
 nr-of-instances = 50
 }

 user/responderManager/resourcesRouter {
 router = round-robin-pool
 nr-of-instances = 20
 }

 user/responderManager/valuesRouter {
 router = round-robin-pool
 nr-of-instances = 20
 }

 user/responderManager/representationsRouter {
 router = round-robin-pool
 nr-of-instances = 20
 }

 user/responderManager/usersRouter {
 router = round-robin-pool
 nr-of-instances = 20
 }
 }
}

Additionally, in KnoraService also the akka-http layer is started:

val host = settings.httpInterface
val port = settings.httpPort
val bindingFuture: Future[ServerBinding] = Http().bindAndHandle(Route.handlerFlow(apiRoutes), host, port)
println(s"Knora API Server started. You can access it on http://${settings.httpInterface}:${settings.httpPort}.")

bindingFuture.onFailure {
 case ex: Exception =>
 log.error(ex, s"Failed to bind to ${settings.httpInterface}:${settings.httpPort}!")
}

Concurrency

Except for a bit of caching, the Knora API server is written in a purely
functional style and has no mutable state, shared or otherwise, not even within actors.
This makes it easier to reason about concurrency, and eliminates an important potential
source of bugs (see Out of the Tar Pit [http://shaffner.us/cs/papers/tarpit.pdf]).

There is a pool of HTTP workers that handle HTTP requests concurrently
using the spray routes in the routing package. Each spray route constructs a
request message and sends it to ResponderManagerV1, which forwards it to a worker actor
in one of its pools. So the size of the HTTP worker pool sets the maximum number
of concurrent HTTP requests, and the size of the worker pool for each
responder sets the maximum number of concurrent messages for that
responder. Whenever a responder needs to do a SPARQL query, it sends a
message to the store manager, which forwards it to a triplestore actor.
The size of the pool(s) of triplestore actors sets the
maximum number of concurrent SPARQL queries.

The routes and actors in the Knora API server uses Akka’s ask pattern, rather than the tell
pattern, to send messages and receive responses, because this simplifies the code
considerably (using tell would require actors to maintain complex mutable state),
with no apparent reduction in performance.

To manage asynchronous communication between actors, the Knora API server uses Scala’s
Future monad extensively. See Futures with Akka for details.

We use Akka’s asynchronous logging interface (see Akka Logging [http://doc.akka.io/docs/akka/current/scala/logging.html]).

What the Responders Do

In the Knora API server, a ‘responder’ is an actor that receives a request message (a
Scala case class) in the ask pattern, gets data from the
triplestore, and turns that data into a reply message (another case
class). These reply messages are are defined in the schemas package.
A responder can produce a reply representing a complete API response, or
part of a response that will be used by another responder. If it’s a
complete API response, it will extend KnoraJsonResponse, which can
be converted directly into JSON by calling its toJsValue method (see
the section on JSON below).

All messages to responders go through the responder supervisor actor
(ResponderManagerV1).

Store Module (org.knora.webapi.store package)

The Store module is used for accessing the triplestore and other
external storage providers.

All access to the Store module goes through the StoreManager
supervisor actor. The StoreManager creates pools of actors, such as
HttpTriplestoreActor, that interface with the storage providers.

The contents of the store package are not used directly by other
packages, which interact with the store package only by sending
messages to StoreManager.

Generation and parsing of SPARQL are handled by this module.

See Store Module for a deeper discussion.

Triplestore Access

SPARQL queries are generated from templates, using the Twirl [https://github.com/playframework/twirl] template engine.
For example, if we’re querying a resource, the template will contain a
placeholder for the resource’s IRI. The templates can be found under
src/main/twirl/queries/sparql/v1. So far we have been able to avoid generating
different SPARQL for different triplestores.

The org.knora.webapi.store package contains actors for communicating with triplestores in different ways: a
triplestore can be accessed over HTTP via the SPARQL 1.1 Protocol [http://www.w3.org/TR/sparql11-protocol/], or it can be embedded in
the Knora API server. However, a responder is not expected to know which triplestore is being used or how the
triplestore is accessed. To perform a SPARQL query, a responder sends a message to the storeManager
actor, like this:

private val storeManager = context.actorSelection("/user/storeManager")

// ...

private def getSomeValue(resourceIri: IRI): Future[String] = {
 for {
 sparqlQuery <- Future(queries.sparql.v1.txt.someTemplate(resourceIri).toString())
 queryResponse <- (storeManager ? SparqlSelectRequest(sparqlQuery)).mapTo[SparqlSelectResponse]
 someValue = // get some value from the query response
 } yield someValue
}

Error Handling

The error-handling design has these aims:

	Simplify the error-handling code in actors as much as possible.

	Produce error messages that clearly indicate the context in which the
error occurred (i.e. what the application was trying to do).

	Ensure that clients receive an appropriate error message when an
error occurs.

	Ensure that ask requests are properly terminated with an akka.actor.Status.Failure
message in the event of an error, without which they will simply time out
(see Send-And-Receive-Future [http://doc.akka.io/docs/akka/current/scala/actors.html#Ask__Send-And-Receive-Future]).

	When a actor encounters an error that isn’t the client’s fault (e.g.
a triplestore failure), log it, but don’t do this with errors caused by bad input.

	When logging errors, include the full JVM stack trace.

The design does not yet include, but could easily accommodate,
translations of error messages into different languages.

A hierarchy of exception classes is defined in Exceptions.scala,
representing different sorts of errors that could occur. The hierarchy
has two main branches:

	RequestRejectedException, an abstract class for errors that are
the client’s fault. These errors are not logged.

	InternalServerException, an abstract class for errors that are
not the client’s fault. These errors are logged.

Exception classes in this hierarchy can be defined to include a wrapped
cause exception. When an exception is logged, its stack trace will
be logged along with the stack trace of its cause. It is therefore
recommended that low-level code should catch low-level exceptions, and
wrap them in one of our higher-level exceptions, in order to clarify the
context in which the error occurred.

To simplify error-handling in responders, a utility method called future2Message is provided
in ActorUtils. It is intended to be used in an actor’s receive method to respond to
messages in the ask pattern. If the responder’s computation is successful,
it is sent to the requesting actor as a response to the ask. If the
computation fails, the exception representing the failure is wrapped in
a Status.Failure, which is sent as a response to the ask. If the
error is a subclass of RequestRejectedException, only the sender is
notified of the error; otherwise, the error is also logged and rethrown
(so that the KnoraExceptionHandler can handle the exception).

In many cases, we transform data from the triplestore into a Map
object. To simplify checking for required values in these collections,
the class ErrorHandlingMap is provided. You can wrap any Map in
an ErrorHandlingMap. You must provide a function that will generate an error message
when a required value is missing, and
optionally a function that throws a particular exception. Rows of SPARQL
query results are already returned in ErrorHandlingMap objects.

If you want to add a new exception class, see the comments in
Exceptions.scala for instructions.

Transformation of Exception to Client Responses

The org.knora.webapi.KnoraExceptionHandler is brought implicitly into scope of akka-http,
and by doing so registered and used to handle the transformation of all KnoraExceptions into HttpResponses. This
handler handles only exceptions thrown inside the route and not the actors. However, the design of reply message passing
from actors (by using future2Message), makes sure that any exceptions thrown inside actors, will reach the route,
where they will be handled.

See also Futures with Akka.

API Routing

The API routes in the routing package are defined using the DSL
provided by the akka-http [http://doc.akka.io/docs/akka/current/scala/http/routing-dsl/index.html] library. A routing function has to do the following:

	Authenticate the client.

	Figure out what the client is asking for.

	Construct an appropriate request message and send it to
ResponderManagerV1, using the ask pattern.

	Return a result to the client.

To simplify the coding of routing functions, they are contained in objects that extend
org.knora.webapi.routing.Authenticator. Each routing function performs the following operations:

	Authenticator.getUserProfileV1 is called to authenticate the user.

	The request parameters are interpreted and validated, and a request message is constructed to send to the responder.
If the request is invalid, BadRequestException is thrown. If the request message is requesting an update operation,
it must include a UUID generated by UUID.randomUUID, so the responder can obtain a write lock on the resource
being updated.

The routing function then passes the message to org.knora.webapi.routing.RouteUtils.runJsonRoute(), which takes
care of sending the message to ResponderManagerV1 and returning a response to the client. Any exceptions thrown
befor calling org.knora.webapi.routing.RouteUtils.runJsonRoute() are handled by the KnoraExceptionHandler.

See How to Add an API Route for an example.

JSON

The Knora API server parses and generate JSON using the spray-json [https://github.com/spray/spray-json] library.

The triplestore returns results in JSON, and these are parsed into SparqlSelectResponse objects in the store
package (by SparqlUtils, which can be used by any actor in that package). A SparqlSelectResponse has a
structure that’s very close to the JSON returned by a triplestore via the SPARQL 1.1 Protocol [http://www.w3.org/TR/sparql11-protocol/]:
it contains a header (listing the variables that were used in the query) and a body (containing rows of query
results). Each row of query results is represented by a VariableResultsRow, which contains a Map[String, String]
of variable names to values.

The Jsonable trait marks classes that can convert themselves into
spray-json AST objects when you call their toJsValue method; it
returns a JsValue object, which can then be converted to text by
calling its prettyPrint or compactPrint methods. Case classes
representing complete API responses extend the KnoraResponseV1
trait, which extends Jsonable. Case classes representing Knora
values extend the ApiValueV1 trait, which also extends Jsonable. To
make the responders reusable, the JSON for API responses is generated
only at the last moment, by the RouteUtils.runJsonRoute() function.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Knora API Server Design Documentation

Futures with Akka

	Introduction

	Handling Errors with Futures

	Using recover on Futures

	Designing with Futures

	Mixing Futures with non-Futures

	How to Write For-Comprehensions

	Execution Contexts

Introduction

Scala’s documentation on futures [http://docs.scala-lang.org/overviews/core/futures.html] introduces them in this way:

Futures provide a nice way to reason about performing many operations in
parallel – in an efficient and non-blocking way. The idea is simple, a
Future is a sort of a placeholder object that you can create for a result
that does not yet exist. Generally, the result of the Future is computed
concurrently and can be later collected. Composing concurrent tasks in
this way tends to result in faster, asynchronous, non-blocking parallel
code.

The rest of that page is well worth reading to get an overview of how
futures work and what you can do with them.

In Akka [http://akka.io/], one of the standard patterns for communication between actors is the
ask pattern [http://doc.akka.io/docs/akka/snapshot/scala/actors.html#Ask__Send-And-Receive-Future], in which you send a message to an actor and you expect a
reply. When you call the ask function (which can be written as a question
mark, ?, which acts as an infix operator), it immediately returns a
Future, which will complete when the reply is sent. As the Akka
documentation explains in Use with Actors [http://doc.akka.io/docs/akka/snapshot/scala/futures.html#Use_With_Actors], it is possible to block the
calling thread until the future completes, using Await.result. However,
they say: ‘Blocking is discouraged though as it will cause performance
problems.’ In particular, by not blocking, you can do several ask requests
in parallel.

One way to avoid blocking is to register a callback on the future, which
will be called when it completes (perhaps by another thread), like this:

future.onComplete {
 case Success(result) => println(result)
 case Failure(ex) => ex.printStackTrace()
}

But this won’t work if you’re writing a method that needs return a value
based on the result of a future. In this case, you can register a
callback that transforms the result of a future into another future:

val newFuture = future.map(x => x + 1)

However, registering callbacks explicitly gets cumbersome when you need
to work with several futures together. In this case, the most convenient
alternative to blocking is to use Future as a monad. The links above
explain what this means in detail, but the basic idea is that a special
syntax, called a for-comprehension, allows you to write code that
uses futures as if they were complete, without blocking. In reality, a
for-comprehension is syntactic sugar for calling methods like
map, but it’s much easier to write and to read. You can do things
like this:

val fooFuture = (fooActor ? GetFoo("foo")).mapTo[Foo]
val barFuture = (barActor ? GetBar("bar")).mapTo[Bar]

val totalFuture = for {
 foo: Foo <- fooFuture
 bar: Bar <- barFuture

 total = foo.getCount + bar.getCount
} yield total

Here the messages to fooActor and barActor are sent and processed in
parallel, but you’re guaranteed that total won’t be calculated until the
values it needs are available. Note that if you construct fooFuture and
barFuture inside the for comprehension, they won’t be run in parallel
(see Scala for-comprehension with concurrently running futures [http://buransky.com/scala/scala-for-comprehension-with-concurrently-running-futures/]).

With one line of code, you can even make a list of messages to be sent
to actors, send them all in parallel, get back a list of futures, and
convert it to a single future which will complete when all the results
are available; see org.knora.webapi.util.ActorUtils.parallelAsk.

Handling Errors with Futures

The constructors and methods of Future (like those of Try) catch
exceptions, which cause the future to fail. This very useful property of
futures means that you usually don’t need try-catch blocks when
using the Future monad (although it is sometimes helpful to include
them, in order to catch low-level exceptions and wrap them in
higher-level ones). Any exception thrown in code that’s being run
asynchronously by Future (including in the yield expression of a
for comprehension) will be caught, and the result will be a
Future containing a Failure. Also, in the previous example, if
fooActor or barActor returns a Status.Failure message, the
for-comprehension will also yield a failed future.

However, you need to be careful with the first line of the
for-comprehension. For example, this code doesn’t handle exceptions
correctly:

private def doFooQuery(iri: IRI): Future[String] = {
 for {
 queryResponse <- (storeManager ? SparqlSelectRequest(queries.sparql.v1.txt.getFoo(iri).toString())).mapTo[SparqlSelectResponse]
 ...
 } yield ...
}

The getFoo() method calls a
Twirl [https://github.com/playframework/twirl] template function to
generate SPARQL. The ? operator returns a Future. However, the
template function is not run asynchronously, because it is called
before the Future constructor is called. So if the template function
throws an exception, it won’t be caught here. Instead, you can do this:

private def doFooQuery(iri: IRI): Future[String] = {
 for {
 queryString <- Future(queries.sparql.v1.txt.getFoo(iri).toString())
 queryResponse <- (storeManager ? SparqlSelectRequest(queryString)).mapTo[SparqlSelectResponse]
 ...
 } yield ...
}

Here the Future constructor will call the template function
asynchronously, and catch any exceptions it throws. This is only
necessary if you need to call the template function at the very
beginning of a for-comprehension. In the rest of the for
comprehension, you’ll already implicitly have a Future object.

Using recover on Futures

By using recover on a Future, an apt error message can be thrown if the Future fails. This is particularly useful when an an error message should be made more clear depending on the context the Future is used in.

For example, we are asking the resources responder to query for a certain resource in order to process it in a special way. However, the client does not know that the resources responder is sent a request and in case the resource cannot be found, the message sent back from the resources responder (NotFoundException) would not make sense to it. Instead, we would like to handle the message in a way so that it makes sense for the operation the client actually executed. We can do this by calling recover on a Future.

private def mySpecialResourceRequest(iri: IRI, userProfile: UserProfileV1): Future[...] = {

 val resourceRequestFuture = for {
 resResponse: ResourceFullResponseV1 <- (responderManager ? ResourceFullGetRequestV1(iri = iri, userProfile = userProfile, getIncoming = false)).mapTo[ResourceFullResponseV1]
 } yield resResponse

 val resourceRequestFutureRecovered = resourceRequestFuture.recover {
 case notFound: NotFoundException => throw BadRequestException(s"Special resource handling failed because the resource could not be found: ${notFound.message}")
 }

 for {

 res <- resourceRequestFutureRecovered

 ...

 } yield ...

}

Please note that the content of the Future has to be accessed using <- to make this work correctly. Otherwise the content will never be looked at.

Designing with Futures

In the current design, the Knora API Server almost never blocks to wait for a
future to complete. The normal flow of control works like this:

	Incoming HTTP requests are handled by an actor called KnoraHttpService,
which delegates them to routing functions (in the routing package).

	For each request, a routing function gets a spray-http
RequestContext, and calls RouteUtils.runJsonRoute to send a message
to a supervisor actor to fulfil the request. Having sent the message, the
runJsonRoute gets a future in return. It does not block to wait for the
future to complete, but instead registers a callback to process the result
of the future when it becomes available.

	The supervisor forwards the message to be handled by the next available
actor in a pool of responder actors that are able to handle that type of
message.

	The responder’s receive method receives the message, and calls some
private method that produces a reply message inside a future. This usually
involves sending messages to other actors using ask, getting futures
back, and combining them into a single future containing the reply message.

	The responder passes that future to ActorUtils.future2Message, which
registers a callback on it. When the future completes (perhaps in another
thread), the callback sends the reply message. In the meantime, the
responder doesn’t block, so it can start handling the next request.

	When the responder’s reply becomes available (causing the future created by
RouteUtils.runJsonRoute to complete), the callback registered in (2)
calls complete on the RequestContext, which sends an HTTP response
to the client.

The basic rule of thumb is this: if you’re writing a method in an actor,
and anything in the method needs to come from a future (e.g. because you
need to use ask to get some information from another actor), have
the method return a future.

Mixing Futures with non-Futures

If you have a match ... case or if expression, and one branch
obtains some data in a future, but another branch can produce the data
immediately, you can wrap the result of the latter branch in a future,
so that both branches have the same type:

def getTotalOfFooAndBar(howToGetFoo: String): Future[Int] = {
 for {
 foo <- howToGetFoo match {
 case "askForIt" => (fooActor ? GetFoo("foo")).mapTo[Foo]
 case "createIt" => Future(new Foo())
 }

 bar <- (barActor ? GetBar("bar")).mapTo[Bar]

 total = foo.getCount + bar.getCount
 } yield total
}

How to Write For-Comprehensions

Here are some basic rules for writing for-comprehensions:

	The first line of a for-comprehension has to be a “generator”,
i.e. it has to use the <- operator. If you want to write an
assignment (using =) as the first line, the workaround is to wrap
the right-hand side in a monad (like Future) and use <-
instead.

	Assignments (using =) are written without val.

	You’re not allowed to write statements that throw away their return
values, so if you want to call something like println that
returns Unit, you have to assign its return value to _.

The yield returns an object of the same type as the generators,
which all have to produce the same type (e.g. Future).

Execution Contexts

Whenever you use a future, there has to be an implicit ‘execution context’ in
scope. Scala’s documentation on futures [http://docs.scala-lang.org/overviews/core/futures.html] says, ‘you can think of execution
contexts as thread pools’.

If you don’t have an execution context in scope, you’ll get a compile error
asking you to include one, and suggesting that you could use
import scala.concurrent.ExecutionContext.Implicits.global. Don’t do this, because
the global Scala execution context is not the most efficient option. Instead,
you can use the one provided by the Akka ActorSystem:

implicit val executionContext = system.dispatcher

Akka’s execution contexts can be configured (see Dispatchers [http://doc.akka.io/docs/akka/snapshot/scala/dispatchers.html]). You can
see a Listing of the Reference Configuration [http://doc.akka.io/docs/akka/snapshot/general/configuration.html#Listing_of_the_Reference_Configuration].

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Knora API Server Design Documentation

HTTP Module

The http module holds only a convenience method for adding CORS support to api routes. The CORS implementation
uses the akka-http-cors [https://github.com/lomigmegard/akka-http-cors] directives implementation.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Knora API Server Design Documentation

Responders Module

Version 1.0 Responders

ResponderManagerV1

CkanResponderV1

HierarchicalListsResponderV1

OntologyResponderV1

The ontology responder provides information derived from all the ontologies in
the repository, including Knora ontologies as well as project-specific
ontologies. Most importantly, it provides information about resource classes
and properties. This includes the cardinalities defined on each resource
class, and takes into account the rules of cardinality inheritance, as
described in the section OWL Cardinalities in The Knora Ontologies.

For performance reasons, all ontology data is loaded and cached at application
startup. Currently, to refresh the cache, you must restart the application.
To maximise performance, the SPARQL queries used by the ontology responder
are very simple, and the responder calculates class hierarchies and cardinality
inheritance in Scala.

ProjectsResponderV1

RepresentationsResponderV1

ResourcesResponderV1

SearchResponderV1

UsersResponderV1

ValuesResponderV1

Shared

	ResponderV1

	ValueUtilV1

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Knora API Server Design Documentation

Store Module

	Overview

	Lifecycle

	HTTP-based Triplestores
	GraphDB

	Fuseki 2

	Embedded Triplestores
	Apache Jena TDB
	Concurrency

	Implementation

	Configuration

	TDB Disk Persisted Store

	Actor Messages

Overview

The store module houses the different types of data stores supported by
the Knora API server. At the moment, only triplestores are supported. The triplestore
support is implemented in the org.knora.webapi.store.triplestore
package.

Lifecycle

At the top level, the store package houses the StoreManager-Actor
which is started when the Knora API server starts. The StoreManager then starts
the TripleStoreManagerActor which in turn starts the correct actor
implementation (e.g., GraphDB, Fuseki, embedded Jena, etc.).

HTTP-based Triplestores

HTTP-based triplestore support is implemented in the org.knora.webapi.triplestore.http package.

An HTTP-based triplestore is one that is accessed remotly over the HTTP protocol. We have implemented support for
the following triplestores:

	Ontotext GraphDB

	Fuseki 2

GraphDB

Fuseki 2

Embedded Triplestores

Embedded triplestores is implemented in the org.knora.webapi.triplestore.embedded package.

An embedded triplestore is one that runs in the same JVM as the Knora API server.

Apache Jena TDB

Note

The support for embedded Jena TDB is currently dropped.
The documentation and the code will remain in the repository. You can use it at your own risk.

The support for the embedded Jena-TDB triplestore is implemented in org.knora.webapi.triplestore.embedded.JenaTDBActor.

The relevant Jena libraries that are used are the following:

	Jena API - The library used to work programmatically with RDF data

	Jena TDB - Their implementation of a triple store

Concurrency

Jena provides concurrency on different levels.

On the Jena TDB level there is the Dataset object, representing the
triple store. On every access, a transaction (read or write) can be
started.

On the Jena API level there is a Model object, which is equivalent
to an RDF Graph. Here we can lock the model, so that MRSW (Multiple
Reader Single Writer) access is allowed.

	https://jena.apache.org/documentation/tdb/tdb_transactions.html

	https://jena.apache.org/documentation/notes/concurrency-howto.html

Implementation

We employ transactions on the Dataset level. This means that every
thread that accesses the triplestore, starts a read or write enabled
transaction.

The transaction mechanism in TDB is based on write-ahead-logging. All
changes made inside a write-transaction are written to journals, then
propagated to the main database at a suitable moment. This design allows
for read-transactions to proceed without locking or other overhead over
the base database.

Transactional TDB supports one active write transaction, and multiple
read transactions at the same time. Read-transactions started before a
write-transaction commits see the database in a state without any
changes visible. Any transaction starting after a write-transaction
commits sees the database with the changes visible, whether fully
propagates back to the database or not. There can be active read
transactions seeing the state of the database before the updates, and
read transactions seeing the state of the database after the updates
running at the same time.

Configuration

In application.conf set to use the embedded triplestore:

triplestore {
 dbtype = "embedded-jena-tdb"

 embedded-jena-tdb {
 persisted = true // "false" -> memory, "true" -> disk
 loadExistingData = false // "false" -> use data if exists, "false" -> create a fresh store
 storage-path = "_TMP" // ignored if "memory"
 }

 reload-on-start = false // ignored if "memory" as it will always reload

 rdf-data = [
 {
 path = "../knora-ontologies/knora-base.ttl"
 name = "http://www.knora.org/ontology/knora-base"
 }
 {
 path = "../knora-ontologies/knora-dc.ttl"
 name = "http://www.knora.org/ontology/dc"
 }
 {
 path = "../knora-ontologies/salsah-gui.ttl"
 name = "http://www.knora.org/ontology/salsah-gui"
 }
 {
 path = "_test_data/ontologies/incunabula-onto.ttl"
 name = "http://www.knora.org/ontology/incunabula"
 }
 {
 path = "_test_data/demo_data/incunabula-demo-data.ttl"
 name = "http://www.knora.org/data/incunabula"
 }
 {
 path = "_test_data/ontologies/images-onto.ttl"
 name = "http://www.knora.org/ontology/dokubib"
 }
 {
 path = "_test_data/demo_data/images-demo-data.ttl"
 name = "http://www.knora.org/data/dokubib"
 }
]
}

Here the storage is set to persistent, meaning that a Jena TDB store
will be created under the defined tdb-storage-path. The
reload-on-start flag, if set to true would reload the triplestore
with the data referenced in rdf-data.

TDB Disk Persisted Store

Note

Make sure to set reload-on-start to true if run for
the first time. This will create a TDB store and load the data.

If only read access is performed, then Knora can be run once with
reloading enabled. After that, reloading can be turned off, and the
persisted TDB store can be reused, as any data found under the
tdb-storage-path will be reused.

If the TDB storage files get corrupted, then just delete the folder and
reload the data anew.

Actor Messages

	ResetTripleStoreContent(rdfDataObjects: List[RdfDataObject])

	ResetTripleStoreContentACK()

The embedded Jena TDB can receive reset messages, and will ACK when
reloading of the data is finished. RdfDataObject is a simple case
class, containing the path and name (the same as rdf-data in the
config file)

As an example, to use it inside a test you could write something like:

val rdfDataObjects = List (
 RdfDataObject(path = "../knora-ontologies/knora-base.ttl",
 name = "http://www.knora.org/ontology/knora-base"),
 RdfDataObject(path = "../knora-ontologies/knora-dc.ttl",
 name = "http://www.knora.org/ontology/dc"),
 RdfDataObject(path = "../knora-ontologies/salsah-gui.ttl",
 name = "http://www.knora.org/ontology/salsah-gui"),
 RdfDataObject(path = "_test_data/ontologies/incunabula-onto.ttl",
 name = "http://www.knora.org/ontology/incunabula"),
 RdfDataObject(path = "_test_data/all_data/incunabula-data.ttl",
 name = "http://www.knora.org/data/incunabula")
)

"Reload data " in {
 storeManager ! ResetTripleStoreContent(rdfDataObjects)
 expectMsg(300.seconds, ResetTripleStoreContentACK())
}

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Knora API Server Design Documentation

Shared Packages

TODO

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Knora API Server Design Documentation

How to Add an API Route

	Write SPARQL templates

	Write Responder Request and Response Messages

	Write a Responder

	Write a Route

Write SPARQL templates

Add any SPARQL templates you need to src/main/twirl/queries/sparql/v1, using the Twirl [https://github.com/playframework/twirl] template engine.

Write Responder Request and Response Messages

Add a file to the org.knora.webapi.messages.v1respondermessages
package, containing case classes for your responder’s request and
response messages. Add a trait that the responder’s request messages
extend. Each request message type should contain a UserProfileV1.

Response message classes that represent a complete API response must
extend KnoraResponseV1, and must therefore have a toJsValue
method that converts the response message to a JSON AST using
spray-json [https://github.com/spray/spray-json].

Write a Responder

Write an Akka actor class that extends ResponderV1, and add it to
the org.knora.webapi.responders.v1 package.

Give your responder a receive() method that handles each of your
request message types by generating a Future containing a response
message, and passing the Future to ActorUtils.futureToMessage(). See
Futures with Akka and Error Handling for details.

See Triplestore Access for details of how to access the triplestore
in your responder.

Add an actor pool for your responder to application.conf, under
actor.deployment.

In ResponderManagerV1, add a reference to your actor pool. Then add
a case to the receive() method in ResponderManagerV1, to
match messages that extend your request message trait, and forward them
to that pool.

Write a Route

Add an object to the org.knora.webapi.routing.v1 package for your
route. Your object should look something like this:

import akka.actor.ActorSystem
import akka.event.LoggingAdapter
import org.knora.webapi.SettingsImpl
import org.knora.webapi.messages.v1respondermessages.SampleGetRequestV1
import org.knora.webapi.routing.RouteUtils
import spray.routing.Directives._
import spray.routing._
import org.knora.webapi.util.StringConversions
import org.knora.webapi.BadRequestException

object SampleRouteV1 extends Authenticator {

 def knoraApiPath(_system: ActorSystem, settings: SettingsImpl, log: LoggingAdapter): Route = {
 implicit val system: ActorSystem = _system
 implicit val executionContext = system.dispatcher
 implicit val timeout = settings.defaultTimeout
 val responderManager = system.actorSelection("/user/responderManager")

 path("sample" / Segment) { iri =>
 get { requestContext =>
 val userProfile = getUserProfileV1(requestContext)
 val requestMessage = makeRequestMessage(iri, userProfile)

 RouteUtils.runJsonRoute(
 requestMessage,
 requestContext,
 settings,
 responderManager,
 log
)
 }
 }
 }

 private def makeRequestMessage(iriStr: String, userProfile: UserProfileV1): SampleGetRequestV1 = {
 val iri = StringConversions.toIri(iriStr, () => throw BadRequestException(s"Invalid IRI: $iriStr"))
 SampleGetRequestV1(iri, userProfile)
 }
}

Finally, add your knoraApiPath() function to the apiRoutes member variable in KnoraService. Any exception
thrown inside the route (e.g., input validation, getUserProfile, etc.) will be handled by the KnoraExceptionHandler,
so that the correct client response (status code, format) will be returned.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Knora API Server Design Documentation

Triplestore Updates

	Requirements
	General

	Permissions

	Ontology Constraints

	Duplicate and Redundant Values

	Versioning
	Deleting

	Linking

	Design
	Responsibilities of Responders

	Application-level Locking

	Ensuring Data Consistency

	SPARQL Update Examples
	Finding a value IRI in a value’s version history

	Creating the initial version of a value

	Adding a new version of a value

	Getting all versions of a value

Requirements

General

The supported update operations are:

	Create a new resource with its initial values.

	Add a new value.

	Change a value.

	Delete a value (i.e. mark it as deleted).

	Delete a resource (i.e. mark it as deleted).

Users must be able to edit the same data concurrently.

Each update must be atomic and leave the database in a consistent, meaningful state, respecting
ontology constraints and permissions.

The application must not use any sort of long-lived locks, because they tend to hinder concurrent edits,
and it is difficult to ensure that they are released when they are no longer needed. Instead, if a user
requests an update based on outdated information (because another user has just changed something, and
the first user has not found out yet), the update must be not performed, and the application must notify
the user who requested it, suggesting that the user should check the relevant data and try again if
necessary. (We may eventually provide functionality to help users merge edits in such a situation. The
application can also encourage users to coordinate with one another when they are working
on the same data, and may eventually provide functionality to facilitate this coordination.)

We can assume that each SPARQL update operation will run in its own database transaction
with an isolation level of ‘read committed’. This is what GraphDB does when it receives a
SPARQL update over HTTP (see GraphDB SE Transactions [http://graphdb.ontotext.com/documentation/free/storage.html#transaction-control]). We cannot assume that it is possible
to run more than one SPARQL update in a single database transaction. (The SPARQL 1.1 Protocol [http://www.w3.org/TR/sparql11-protocol/]
does not provide a way to do this, and currently it can be done only by embedding the triplestore
in the application and using a vendor-specific API, but we cannot require this in Knora.)

Permissions

To create a new value (as opposed to a new version of an existing value), the user must have
knora-base:hasModifyPermission on the containing resource.

To create a new version of an existing value, the user needs only to have knora-base:hasModifyPermission
on the current version of the value; no permissions on the resource are needed.

Since changing a link requires deleting the old link and creating a new one (as described in
Linking), a user wishing to change a link must have modify permission on both
the containing resource and the knora-base:LinkValue for the existing link.

When a new value is created, it is given the default permissions specified in the definition of its
property. These are subproperties of knora-base:hasDefaultPermission, and are converted into
the corresponding subproperties of knora-base:hasPermission. Similarly, when a new resource is
created, it is given the default permissions specified in the definition of its OWL class.

Ontology Constraints

Knora must not allow an update that would violate an ontology constraint.

When creating a new value (as opposed to adding a new version of an existing value), Knora must not
allow the update if the containing resource’s OWL class does not contain a cardinality restriction for the
submitted property, or if the new value would violate the cardinality restriction.

It must also not allow the update if the type of the submitted value does not
match the knora-base:objectClassConstraint of the property, or if the
property has no knora-base:objectClassConstraint. In the case of a
property that points to a resource, Knora must ensure that the target resource
belongs to the OWL class specified in the property’s
knora-base:objectClassConstraint, or to a subclass of that class.

Duplicate and Redundant Values

When creating a new value, or changing an existing value, Knora checks whether the submitted
value would duplicate an existing value for the same property in the resource. The definition of
‘duplicate’ depends on the type of value; it does not necessarily mean that the two values are
strictly equal. For example, if two text values contain the same Unicode string, they are considered
duplicates, even if they have different Standoff markup. If resource R has property P
with value V1, and V1 is a duplicate of V2, the API server must not add another instance
of property P with value V2. However, if the requesting user does not have permission to
see V2, the duplicate is allowed, because forbidding it would reveal the contents of V2
to the user.

When creating a new version of a value, Knora also checks whether the new version is redundant,
given the existing value. It is possible for the definition of ‘redundant’ can depend on the
type of value, but in practice, it means that the values are strictly equal: any change, however
trivial, is allowed.

Versioning

Each Knora value (i.e. something belonging to an OWL class derived from
knora-base:Value) is versioned. This means that once created, a value is
never modified. Instead, ‘changing’ a value means creating a new version of
the value — actually a new value — that points to the previous version
using knora-base:previousValue. The versions of a value are a singly-
linked list, pointing backwards into the past. When a new version of a value
is made, the triple that points from the resource to the old version (using a
subproperty of knora-base:hasValue) is removed, and a triple is added to
point from the resource to the new version. Thus the resource always points
only to the current version of the value, and the older versions are available
only via the current version’s knora-base:previousValue predicate.

Unlike values, resources (members of OWL classes derived from
knora-base:Resource) are not versioned. The data that is attached to a
resource, other than its values, can be modified.

Deleting

Knora does not actually delete resources or values; it only marks them as
deleted. Deleted data is normally hidden. All resources and values must have
the predicate knora- base:isDeleted, whose object is a boolean. If a
resource or value has been marked as deleted, it has
knora-base:isDeleted true and has a knora-base:deleteDate. An
optional knora-base:deleteComment may be added to explain why the
resource or value has been marked as deleted.

Normally, a value is marked as deleted without creating a new version of it.
However, link values must be treated as a special case. Before a LinkValue can be
marked as deleted, its reference count must be decremented to 0. Therefore, a
new version of the LinkValue is made, with a reference count of 0, and it
is this new version that is marked as deleted.

Since it is necessary to be able to find out when a resource was deleted, it
is not possible to undelete a resource. Moreover, to simplify the checking
of cardinality constraints, and for consistency with resources, it is not possible
to undelete a value, and no new versions of a deleted value can be made.
Instead, if desired, a new resource or value can be created by copying data from a
deleted resource or value.

Linking

Knora API v1 treats a link between two resources as a value, but in RDF, links must be treated
differently to other types of values. Knora needs to maintain information about the link,
including permissions and a version history. Since the link does not have a unique IRI of its own, Knora
uses RDF reifications [http://www.w3.org/TR/rdf-schema/#ch_reificationvocab] for this purpose. Each link between two resources has exactly one (non-deleted)
knora-base:LinkValue. The resource itself has a predicate that points to the LinkValue, using a
naming convention in which the word Value is appended to the name of the link predicate to produce
the link value predicate. For example, if a resource representing a book has a predicate called
hasAuthor that points to another resource, it must also have a predicate called hasAuthorValue
that points to the LinkValue in which information about the link is stored. To find a particular
LinkValue, one can query it either by using its IRI (if known), or by using its rdf:subject,
rdf:predicate, and rdf:object (and excluding link values that are marked as deleted).

Like other values, link values are versioned. The link value predicate always points from
the resource to the current version of the link value, and previous versions are available only via
the current version’s knora-base:previousValue predicate. Deleting a link means deleting the triple
that links the two resources, and making a new version of the link value, marked with
knora-base:isDeleted. A triple then points from the resource to this new, deleted version
(using the link value property).

The API allows a link to be ‘changed’ so that it points to a different target resource. This is
implemented as follows: the existing triple connecting the two resources is removed, and a new triple
is added using the same link property and pointing to the new target resource. A new version of the
old link’s LinkValue is made, marked with knora-base:isDeleted. A new LinkValue is made
for the new link. The new LinkValue has no connection to the old one.

When a resource contains knora-base:TextValue with Standoff markup that includes a reference
to another resource, this reference is materialised as a direct link between the two resources, to
make it easier to query. A special link property, knora-base:hasStandoffLinkTo, is used for this
purpose. The corresponding link value property, knora-base:hasStandoffLinkToValue, points to a
LinkValue. This LinkValue contains a reference count, indicated by
knora-base:valueHasRefCount, that represents the number of text values in the containing resource
that include one or more Standoff references to the specified target resource. Each time this number
changes, a new version of this LinkValue is made. When the reference count reaches zero, the triple
with knora-base:hasStandoffLinkTo is removed, and a new version of the LinkValue is made and
marked with knora-base:isDeleted. If the same resource reference later appears again in a text value,
a new triple is added using knora-base:hasStandoffLinkTo, and a new LinkValue is made, with
no connection to the old one.

For consistency, every LinkValue contains a reference count. If the link property is not
knora-base:hasStandoffLinkTo, the reference count will always be either 1 (if the link exists)
or 0 (if it has been deleted, in which case the link value will also be marked with
knora-base:isDeleted).

When a LinkValue is created for a standoff resource reference, it is given the same permissions
as the text value containing the reference.

Design

Responsibilities of Responders

ResourcesResponderV1 has sole responsibility for generating SPARQL to
create and updating resources, and ValuesResponderV1 has sole
responsibility for generating SPARQL to create and update values. When a new
resource is created with its values, ValuesResponderV1 generates SPARQL
statements that can be included in the WHERE and INSERT clauses of a
SPARQL update to create the values, and ResourcesResponderV1 adds these
statements to the SPARQL update that creates the resource. This ensures that
the resource and its values are created in a single SPARQL update operation,
and hence in a single triplestore transaction.

Application-level Locking

The ‘read committed’ isolation level cannot prevent a scenario where two users
want to add the same data at the same time. It is possible that both requests
would do pre-update checks and simultaneously find that it is OK to add the
data, and that both updates would then succeed, inserting redundant data and
possibly violating ontology constraints. Therefore, Knora uses short-lived,
application-level write locks on resources, to ensure that only one request at
a time can update a given resource. Before each update, the application
acquires a resource lock. It then does the pre-update checks and the update,
then releases the lock. The lock implementation (in ResourceLocker)
requires each API request message to include a random UUID, which is generated
in the API Routing package. Using application-level locks allows us to
do pre-update checks in their own transactions, and finally to do the SPARQL
update in its own transaction.

Ensuring Data Consistency

Knora enforces consistency constraints using three redundant mechanisms:

	By doing pre-update checks in SPARQL SELECT queries.

	By doing checks in the WHERE clauses of SPARQL updates.

	By using GraphDB’s built-in consistency checker (see Consistency Checking).

We take the view that redundant consistency checks are a good thing.

Pre-update checks are SPARQL SELECT queries that are executed while
holding an application-level lock on the resource to be updated. These checks
should work with any triplestore, and can return helpful, Knora-specific
error messages to the client if the request would violate a consistency
constraint.

However, the SPARQL update itself is our only chance to do pre-update checks
in the same transaction that will perform the update. The design of the
SPARQL 1.1 Update [http://www.w3.org/TR/sparql11-update/] standard makes it possible to ensure that if certain
conditions are not met, the update will not be performed. In our SPARQL update
code, each update contains a WHERE clause, possibly a DELETE clause,
and an INSERT clause. The WHERE clause is executed first. It performs
consistency checks and provides values for variables that are used in the
DELETE and/or INSERT clauses. In our updates, if the expectations of
the WHERE clause are not met (e.g. because the data to be updated does not
exist), the WHERE clause should return no results; as a result, the update
will not be performed.

Regardless of whether the update succeeds or not, it returns nothing. So the
only way to find out whether it was successful is to do a SELECT
afterwards. Moreover, if the update failed, there is no straightforward way to
find out why. This is one reason why Knora does pre-update checks by means of
separate SELECT queries, before performing the update. This makes it
possible to return specific error messages to the user to indicate why an
update cannot be performed.

Moreover, while some checks are easy to do in a SPARQL update, others are
difficult, impractical, or impossible. Easy checks include checking whether a
resource or value exists or is deleted, and checking that the
knora-base:objectClassConstraint of a predicate matches the rdf:type of
its intended object. Cardinality checks are not very difficult, but they perform
poorly on Jena. Knora does not do permission checks in SPARQL, because its
permission-checking algorithm is too complex to be implemented in SPARQL. For
this reason, Knora’s check for duplicate values cannot be done in SPARQL
update code, because it relies on permission checks.

SPARQL Update Examples

The following sample SPARQL update code is simpler than what Knora actually does. It is included here to
illustrate the way Knora’s SPARQL updates are structured and how concurrent updates are handled.

Finding a value IRI in a value’s version history

We will need this query below. If a value is present in a resource
property’s version history, the query returns everything known about the
value, or nothing otherwise:

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix knora-base: <http://www.knora.org/ontology/knora-base#>

SELECT ?p ?o
WHERE {
 BIND(IRI("http://data.knora.org/c5058f3a") as ?resource)
 BIND(IRI("http://www.knora.org/ontology/incunabula#book_comment") as ?property)
 BIND(IRI("http://data.knora.org/c5058f3a/values/testComment002") as ?searchValue)

 ?resource ?property ?currentValue .
 ?currentValue knora-base:previousValue* ?searchValue .
 ?searchValue ?p ?o .
}

Creating the initial version of a value

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix knora-base: <http://www.knora.org/ontology/knora-base#>

WITH <http://www.knora.org/ontology/incunabula>
INSERT {
 ?newValue rdf:type ?valueType ;
 knora-base:valueHasString """Comment 1""" ;
 knora-base:attachedToUser <http://data.knora.org/users/91e19f1e01> ;
 knora-base:attachedToProject <http://data.knora.org/projects/77275339> ;
 knora-base:hasPermissions "V knora-admin:KnownUser,knora-admin:UnknownUser|M knora-admin:ProjectMember" ;
 knora-base:valueTimestamp ?currentTime .

 ?resource ?property ?newValue .
} WHERE {
 BIND(IRI("http://data.knora.org/c5058f3a") as ?resource)
 BIND(IRI("http://www.knora.org/ontology/incunabula#book_comment") as ?property)
 BIND(IRI("http://data.knora.org/c5058f3a/values/testComment001") AS ?newValue)
 BIND(IRI("http://www.knora.org/ontology/knora-base#TextValue") AS ?valueType)
 BIND(NOW() AS ?currentTime)

 # Do nothing if the resource doesn't exist.
 ?resource rdf:type ?resourceClass .

 # Do nothing if the submitted value has the wrong type.
 ?property knora-base:objectClassConstraint ?valueType .
}

To find out whether the insert succeeded, the application can use the
query in Finding a value IRI in a value’s version history to look for the new IRI in the
property’s version history.

Adding a new version of a value

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix knora-base: <http://www.knora.org/ontology/knora-base#>

WITH <http://www.knora.org/ontology/incunabula>
DELETE {
 ?resource ?property ?currentValue .
} INSERT {
 ?newValue rdf:type ?valueType ;
 knora-base:valueHasString """Comment 2""" ;
 knora-base:previousValue ?currentValue ;
 knora-base:attachedToUser <http://data.knora.org/users/91e19f1e01> ;
 knora-base:attachedToProject <http://data.knora.org/projects/77275339> ;
 knora-base:hasPermissions "V knora-admin:KnownUser,knora-admin:UnknownUser|M knora-admin:ProjectMember" ;
 knora-base:valueTimestamp ?currentTime .

 ?resource ?property ?newValue .
} WHERE {
 BIND(IRI("http://data.knora.org/c5058f3a") as ?resource)
 BIND(IRI("http://data.knora.org/c5058f3a/values/testComment001") AS ?currentValue)
 BIND(IRI("http://data.knora.org/c5058f3a/values/testComment002") AS ?newValue)
 BIND(IRI("http://www.knora.org/ontology/knora-base#TextValue") AS ?valueType)
 BIND(NOW() AS ?currentTime)

 ?resource ?property ?currentValue .
 ?property knora-base:objectClassConstraint ?valueType .
}

The update request must contain the IRI of the most recent version of
the value (http://data.knora.org/c5058f3a/values/c3295339). If this
is not in fact the most recent version (because someone else has done an
update), this operation will do nothing (because the WHERE clause
will return no rows). To find out whether the update succeeded, the
application will then need to do a SELECT query using the
query in Finding a value IRI in a value’s version history. In the case of concurrent updates,
there are two possibilities:

	Users A and B are looking at version 1. User A submits an update and
it succeeds, creating version 2, which user A verifies using a
SELECT. User B then submits an update to version 1 but it fails,
because version 1 is no longer the latest version. User B’s SELECT
will find that user B’s new value IRI is absent from the value’s
version history.

	Users A and B are looking at version 1. User A submits an update and
it succeeds, creating version 2. Before User A has time to do a
SELECT, user B reads the new value and updates it again. Both users
then do a SELECT, and find that both their new value IRIs are present
in the value’s version history.

Getting all versions of a value

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix knora-base: <http://www.knora.org/ontology/knora-base#>

SELECT ?value ?valueTimestamp ?previousValue
WHERE {
 BIND(IRI("http://data.knora.org/c5058f3a") as ?resource)
 BIND(IRI("http://www.knora.org/ontology/incunabula#book_comment") as ?property)
 BIND(IRI("http://data.knora.org/c5058f3a/values/testComment002") AS ?currentValue)

 ?resource ?property ?currentValue .
 ?currentValue knora-base:previousValue* ?value .

 OPTIONAL {
 ?value knora-base:valueTimestamp ?valueTimestamp .
 }

 OPTIONAL {
 ?value knora-base:previousValue ?previousValue .
 }
}

This assumes that we know the current version of the value. If the
version we have is not actually the current version, this query will
return no rows.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Knora API Server Design Documentation

Consistency Checking

Ontotext GraphDB [https://ontotext.com/products/graphdb/] provides a mechanism for checking the consistency of data in
a repository each time an update transaction is committed. Knora provides
GraphDB-specific consistency rules that take advantage of this feature to
provide an extra layer of consistency checks, in addition to the checks that
are implemented in the Knora API server.

Requirements

The Knora API server is designed to prevent inconsistencies in RDF data, as
far as is practical, in a triplestore-independent way (see
Triplestore Updates). However, it is also useful to enforce consistency
constraints in the triplestore itself, for two reasons:

	To prevent inconsistencies resulting from bugs in the Knora API server.

	To prevent users from inserting inconsistent data directly into the triplestore,
bypassing the Knora API server.

The design of the knora-base ontology supports two ways of specifying constraints
on data (see The Knora Ontologies for details):

	A property definition should specify the types that are allowed as subjects
and objects of the property, using knora-base:subjectClassConstraint and
(if it is an object property) knora-base:objectClassConstraint. Every subproperty of
knora-base:hasValue or a knora-base:hasLinkTo (i.e. every property of a resource
that points to a knora-base:Value or to another resource) is required have this constraint,
because the Knora API server relies on it to know what type of object to expect for the property.
Use of knora-base:subjectClassConstraint is recommended but not required.

	A class definition should use OWL cardinalities (see
OWL 2 Quick Reference Guide [https://www.w3.org/TR/owl2-quick-reference/]) to indicate the properties that instances of
the class are allowed to have, and to constrain the number of objects that each
property can have. Subclasses of knora-base:Resource are required to have
a cardinality for each subproperty of knora-base:hasValue or a knora-base:hasLinkTo
that resources of that class can have.

Specifically, consistency checking should prevent the following:

	An object property or datatype property has a subject of the wrong class, or an
object property has an object of the wrong class (GraphDB’s consistency checke
cannot check the types of literals).

	An object property has an object that does not exist (i.e. the object is an IRI
that is not used as the subject of any statements in the repository). This can be treated
as if the object is of the wrong type (i.e. it can cause a violation of
knora-base:objectClassConstraint, because there is no compatible rdf:type statement
for the object).

	A class has owl:cardinality 1 or owl:minCardinality 1 on an object property
or datatype property, and an instance of the class does not have that property.

	A class has owl:cardinality 1 or owl:maxCardinality 1 on an object property
or datatype property, and an instance of the class has more than one object for that
property.

	An instance of knora-base:Resource has an object property pointing to a
knora-base:Value or to another Resource, and its class has no cardinality
for that property.

	An instance of knora-base:Value has a subproperty of knora-base:valueHas,
and its class has no cardinality for that property.

	A datatype property has an empty string as an object.

Cardinalities in base classes are inherited by derived classes. Derived classes
can override inherited cardinalities by making them more restrictive, i.e. by specifying
a subproperty of the one specified in the original cardinality.

Instances of Resource and Value can be marked as deleted, using the property
isDeleted. This must be taken into account as follows:

	With owl:cardinality 1 or owl:maxCardinality 1, if the object of the
property can be marked as deleted, the property must not have more than one object that has
not been marked as deleted. In other words, it’s OK if there is more than one object, as
long only one of them has knora-base:isDeleted false.

	With owl:cardinality 1 or owl:minCardinality 1, the property must
have an object, but it’s OK if the property’s only object is marked as deleted.
We allow this because the subject and object may have different owners, and it may
not be feasible for them to coordinate their work. The owner of the object
should always be able to mark it as deleted. (It could be useful to notify
the owner of the subject when this happens, but that is beyond the scope of
consistency checking.)

Design

When a repository is created in GraphDB, a set of consistency rules can be
provided, and GraphDB’s consistency checker can be turned on to ensure that
each update transaction respects these rules, as described in the section
Reasoning [http://graphdb.ontotext.com/documentation/standard/reasoning.html] of the GraphDB documentation. Like custom inference rules,
consistency rules are defined in files with the .pie filename extension,
in a GraphDB-specific syntax.

We have added rules to the standard RDFS inference rules file
builtin_RdfsRules.pie, to create the file KnoraRules.pie. The .ttl
configuration file that is used to create the repository must contain these
settings:

owlim:ruleset "/path/to/KnoraRules.pie" ;
owlim:check-for-inconsistencies "true" ;

The path to KnoraRules.pie must be an absolute path. The scripts provided
with Knora to create test repositories set this path automatically.

Consistency checking in GraphDB relies on reasoning. GraphDB’s reasoning
is Forward-chaining [http://graphdb.ontotext.com/documentation/standard/introduction-to-semantic-web.html#reasoning-strategies], which means that reasoning is applied to the contents
of each update, before the update transaction is committed, and the inferred
statements are added to the repository.

A GraphDB rules file can contain two types of rules: inference rules and
consistency rules. Before committing an update transaction, GraphDB applies
inference rules, then consistency rules. If any of the consistency rules are
violated, the transaction is rolled back.

An inference rule has this form:

Id: <rule_name>
 <premises> <optional_constraints>

 <consequences> <optional_constraints>

The premises are a pattern that tries to match statements found in the data.
Optional constraints, which are enclosed in square brackets, make it possible
to specify the premises more precisely, or to specify a named graph (see
examples below). Consequences are the statements that will be inferred if the
premises match. A line of hyphens separates premises from consequences.

A GraphDB consistency rule has a similar form:

Consistency: <rule_name>
 <premises> <optional_constraints>

 <consequences> <optional_constraints>

The differences between inference rules and consistency rules are:

	A consistency rule begins with Consistency instead of Id.

	In a consistency rule, the consequences are optional. Instead of representing
statements to be inferred, they represent statements that must exist if the premises
are satisfied. In other words, if the premises are satisfied and the consequences
are not found, the rule is violated.

	If a consistency rule doesn’t specify any consequences, and the premises are
satisfied, the rule is violated.

Rules use variable names for subjects, predicates, and objects, and they can use actual
property names.

Empty string as object

If subject i has a predicate p whose object is an empty string,
the constraint is violated:

Consistency: empty_string
 i p ""

Subject and object class constraints

If subject i has a predicate p that requires a subject of type t,
and i is not a t, the constraint is violated:

Consistency: subject_class_constraint
 p <knora-base:subjectClassConstraint> t
 i p j

 i <rdf:type> t

If subject i has a predicate p that requires an object of type t,
and the object of p is not a t, the constraint is violated:

Consistency: object_class_constraint
 p <knora-base:objectClassConstraint> t
 i p j

 j <rdf:type> t

Cardinality constraints

A simple implementation of a consistency rule to check owl:maxCardinality
1, for objects that can be marked as deleted, could look like this:

Consistency: max_cardinality_1_with_deletion_flag
 i <rdf:type> r
 r <owl:maxCardinality> "1"^^xsd:nonNegativeInteger
 r <owl:onProperty> p
 i p j
 i p k [Constraint j != k]
 j <knora-base:isDeleted> "false"^^xsd:boolean
 k <knora-base:isDeleted> "false"^^xsd:boolean

This means: if resource i is a subclass of an owl:Restriction r
with owl:maxCardinality 1 on property p, and the resource has two
different objects for that property, neither of which is marked as
deleted, the rule is violated. Note that this takes advantage of the
fact that Resource and Value have owl:cardinality 1 on isDeleted
(isDeleted must be present even if false), so we do not need to check
whether i is actually something that can be marked as deleted.

However, this implementation would be much too slow. We therefore use
two optimisations suggested by Ontotext:

	Add custom inference rules to make tables (i.e. named graphs) of pre-calculated
information about the cardinalities on properties of subjects,
and use those tables to simplify the consistency rules.

	Use the [Cut] constraint to avoid generating certain redundant compiled rules
(see Entailment rules [http://graphdb.ontotext.com/documentation/standard/reasoning.html#entailment-rules]).

For example, to construct a table of subjects belonging to classes that have
owl:maxCardinality 1 on some property p, we use the following custom
inference rule:

Id: maxCardinality_1_table
 i <rdf:type> r
 r <owl:maxCardinality> "1"^^xsd:nonNegativeInteger
 r <owl:onProperty> p

 i p r [Context <onto:_maxCardinality_1_table>]

The constraint [Context <onto:_maxCardinality_1_table>] means that the
inferred triples are added to the context (i.e. the named graph)
http://www.ontotext.com/_maxCardinality_1_table. (Note that we have defined the prefix
onto as http://www.ontotext.com/ in the Prefices section of the rules file.)
As the GraphDB documentation on Rules [http://graphdb.ontotext.com/documentation/standard/reasoning.html#rules] explains:

If the context is provided, the statements produced as rule consequences are
not ‘visible’ during normal query answering. Instead, they can only be used as
input to this or other rules and only when the rule premise explicitly uses
the given context.

Now, to find out whether a subject belongs to a class with that cardinality on
a given property, we only need to match one triple. The revised implementation
of the rule max_cardinality_1_with_deletion_flag is as follows:

Consistency: max_cardinality_1_with_deletion_flag
 i p r [Context <onto:_maxCardinality_1_table>]
 i p j [Constraint j != k]
 i p k [Cut]
 j <knora-base:isDeleted> "false"^^xsd:boolean
 k <knora-base:isDeleted> "false"^^xsd:boolean

The constraint [Constraint j != k] means that the premises will be satisfied only
if the variables j and k do not refer to the same thing.

With these optimisations, the rule is faster by several orders of magnitude.

Since properties whose objects can be marked as deleted must be handled differently
to properties whose objects cannot be marked as deleted, the knora-base ontology
provides a property called objectCannotBeMarkedAsDeleted. All properties in
knora-base whose objects cannot take the isDeleted flag (including datatype
properties) should be derived from this property. This is how it is used to check
owl:maxCardinality 1 for objects that cannot be marked as deleted:

Consistency: max_cardinality_1_without_deletion_flag
 i p r [Context <onto:_maxCardinality_1_table>]
 p <rdfs:subPropertyOf> <knora-base:objectCannotBeMarkedAsDeleted>
 i p j [Constraint j != k]
 i p k [Cut]

To check owl:minCardinality 1, we do not care whether the object can
be marked as deleted, so we can use this simple rule:

Consistency: min_cardinality_1_any_object
 i p r [Context <onto:_minCardinality_1_table>]

 i p j

This means: if a subject i belongs to a class that has
owl:minCardinality 1 on property p, and i has no object for p,
the rule is violated.

To check owl:cardinality 1, we need two rules: one that checks whether
there are too few objects, and one that checks whether there are too many.
To check whether there are too few objects, we don’t care whether the objects
can be marked as deleted, so the rule is the same as
min_cardinality_1_any_object, except for the cardinality:

Consistency: cardinality_1_not_less_any_object
 i p r [Context <onto:_cardinality_1_table>]

 i p j

To check whether there are too many objects, we need to know whether
the objects can be marked as deleted or not. In the case where the objects
can be marked as deleted, the rule is the same as
max_cardinality_1_with_deletion_flag, except for the cardinality:

Consistency: cardinality_1_not_greater_with_deletion_flag
 i p r [Context <onto:_cardinality_1_table>]
 i p j [Constraint j != k]
 i p k [Cut]
 j <knora-base:isDeleted> "false"^^xsd:boolean
 k <knora-base:isDeleted> "false"^^xsd:boolean

In the case where the objects cannot be marked as deleted, the rule is the
same as max_cardinality_1_without_deletion_flag, except for the
cardinality:

Consistency: cardinality_1_not_less_any_object
 i p r [Context <onto:_cardinality_1_table>]

 i p j

Knora allows a subproperty of knora-base:hasValue or
knora-base:hasLinkTo to be a predicate of a resource only if the resource’s
class has some cardinality for the property. For convenience,
knora-base:hasValue and knora-base:hasLinkTo are subproperties of
knora-base:resourceProperty, which is used to check this constraint in the
following rule:

Consistency: resource_prop_cardinality_any
 i <knora-base:resourceProperty> j

 i p j
 i <rdf:type> r
 r <owl:onProperty> p

If resource i has a subproperty of knora-base:resourceProperty,
and i is not a member of a subclass of an owl:Restriction r
with a cardinality on that property (or on one of its base
properties), the rule is violated.

A similar rule, value_prop_cardinality_any, ensures that if a value has
a subproperty of knora-base:valueHas, the value’s class has some cardinality
for that property.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Knora API Server Design Documentation

Authentication in the Knora API Server

	Scope

	Implementation

	Usage
	Checking Credentials

	Web client (Login/Logout)

	Submitting Credentials in the URL or in the HTTP Authentication Header

	Workflow

	Skipping Authentication

	Sipi (Media Server)

	Improving Security

Scope

Authentication is the process of making sure that if someone is
accessing something then this someone is actually also the someone
he pretends to be. The process of making sure that someone is
authorized, i.e. has the permission to access something, is handled as
described in the section on authorization in the Knora base ontology
document. TODO: add a link to this.

Implementation

The authentication in Knora is based on Basic Auth
HTTP basic authentication [https://en.wikipedia.org/wiki/Basic_access_authentication], URL parameters, and cookies. This means that
on every request (to any of the routes), an authentication header, URL
parameters or cookie need to be sent.

All routes are always accessible and if there are no credentials
provided, a default user is assumed. If credentials are sent and they
are not correct (e.g., wrong username, password incorrect), then the
request will end in an error message. This is not true for a cookie
containing an expired session id. In this case, the default user is
assumed.

Usage

Checking Credentials

To check the credentials and create a ‘session’, e.g., by a login window
in the client, there is a special route called /v1/authentication,
which returns following for each case:

Credentials correct:

{
 "status": 0,
 "message": "credentials are OK".
 "sid": "1437643844783"
}

In this case, the found user profile is written to a cache and stored
under the ‘’sid’’ key. Also a header requesting to store the ‘’sid’’ in
a cookie is sent. On subsequent access to all the other routes, the
‘’sid’’ is used to retrieve the cached user profile. If successful, the
user is deemed authenticated.

Email wrong:

{
 "status": 2,
 "message": "bad credentials: user not found"
}

Password wrong:

{
 "status": 2,
 "message": "bad credentials: user found, but password did not match"
}

No credentials:

{
 "status": 999,
 "message": "no credentials found"
}

Web client (Login/Logout)

When a web client accesses the /v1/authentication route
successfully, it gets back a cookie. To logout the client can call
the same route and provide the logout parameter
/v1/authenticate?logout. This will delete the cache entry and remove
the session id from the cookie on the client.

Submitting Credentials in the URL or in the HTTP Authentication Header

	As an alternative to creating a session, the client may also submit the credentials:

	
	in the URL (when doing a HTTP-GET request) submitting the parameters email and password (e.g. http://knora-host/v1/resources/resIri?email=userUrlEncodedEmail&password=pw)

	in the HTTP header (HTTP basic authentication [https://en.wikipedia.org/wiki/Basic_access_authentication]) when doing a HTTP request to the API (all methods). When using Python’s module requests,
the credentials can simply be submitted as a tuple with each request using the param auth (python requests [http://docs.python-requests.org/en/master/user/authentication/#basic-authentication]).

Workflow

	The login form on the client can use /v1/authentication to check if
the email/password combination provided by the user is correct. The
email and password can be provided as URL parameters (see above).

	on the server, this gets checked and a corresponding result as
described will be returned

	all subsequent calls can then send these credentials as
authentication header or URL parameters (email / password), and in
the case of a web client just the cookie.

Step 1 and 2 are optional, and can be skipped, if prior checking of the
credentials is not needed. Naturally, this won’t work for a web client
using cookies for authentication.

Skipping Authentication

There is the possibility to turn skipping authentication on and use a hardcoded
user (Test User). In application.conf set the
skip-authentication = true and Test User will be always
assumed.

Sipi (Media Server)

For authentication to work with the media server, we need to add support
for cookies. At the moment the SALSAH-App would set BasicAuth heathers,
but this only works for AJAX requests using SALSAH.ApiGet (Put, etc.).
Since the medias are embedded as source tags, the browser would get them
on his own, and doesn’t know anything about the needed AuthHeathers.
With cookies, the browser would send those automatically with every
request. The media server can use the credentials of the user
requesting something for accessing the RepresentationsRouteV1, i.e. make
this request in the name of the user so to speak, then the
RepresentationResponderV1 should have all the information it needs to
filter the result based on the users permissions.

Improving Security

In the first iteration, the email/password would be sent in clear
text. Since we will use HTTPS this shouldn’t be a problem. The second
iteration, could encrypt the email/password.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Knora API Server Design Documentation

Administration (Users, Projects, Groups, Institutions, Permissions)

Scope

This Section includes management (creation, updating, deletion) of Users, Projects, Groups, Institutions, and
Permissions.

Implementation

All administration functions will be implemented as part of the Knora API in the webapi codebase. There is also a
separate web-application as part of the salsah codebase using this API, allowing basic management operations.

Overview

During the initial deployment of a Knora server, the main administration user (root) is created. This root user has
the right to do anything.

Knora’s concept of access control is that permissions can only be granted to groups (or the whole project, i.e. all
members of a project) and not to individual users. There are two distinct ways of granting permission. Firstly, an
object (a resource or value) can grant permissions to groups of users, and secondly, permissions can be granted directly
to a group of users (not bound to a specific object). There are six built-in groups: UnknownUser, KnownUser,
Creator, ProjectMember, ProjectAdmin, and SystemAdmin. These groups can be used in the same way as normal user
created groups for permission management, i.e. can be used to give certain groups of users, certain permissions, without
the need to explicitly create them.

A user becomes implicitly a member of such a group by satisfying certain conditions:

	knora-base:UnknownUser:

	Any user who has not logged into the Knora API server is automatically assigned to this group.

	knora-base:KnownUser:

	Any user who has logged into the Knora API server is automatically assigned to this group.

	knora-base:Creator:

	When checking a user’s permissions on an object, the user is automatically assigned to this group if he is
the creator of the object.

	knora-base:ProjectMember:

	When checking a user’s permissions, the user is automatically assigned to this group by being a member of a
project designated by the knora-base:isInProject property.

	knora-base:ProjectAdmin:

	When checking a user’s permission, the user is automatically assigned to this group through the
knora-base:isInProjectAdminGroup property, which points to the project in question.

	knora-base:SystemAdmin:

	Membership is received by setting the property knora-base:isInSystemAdminGroup to true on a
knora-base:User.

To use these build-in groups as values for properties (Object Access and Default Permissions), the IRI is constructed by
appending the name of the built-in group to knora-base, e.g., knora-base:KnownUser where knora-base
corresponds to http://www.knora.org/ontology/knora-base#.

Permissions

Up until know, we have mentioned two groups of permissions. The first called object access permissions, which contains
permissions that point from explicit objects (resources/values) to groups. The second group of permissions called
administrative permissions, and which contains permissions that are put on instances of knora-base:Permission
objects directly affecting groups. There is another, third group of permissions, called default object access permissions
which is also put on instances of knora-base:Permission, and wich also directly affect groups.

Object Access Permissions

An object (resource / value) can grant the following permissions, which are stored in a compact format in a single
string, which is the object of the predicate knora-base:hasPermissions:

	Restricted view permission (RV): Allows a restricted view of the object, e.g. a view of an image with a
watermark.

	View permission (V): Allows an unrestricted view of the object. Having view permission on a resource
only affects the user’s ability to view information about the resource other than its values. To view a value, she
must have view permission on the value itself.

	Modify permission (M): For values, this permission allows a new version of a value to be created. For
resources, this allows the user to create a new value (as opposed to a new version of an existing value), or to
change information about the resource other than its values. When he wants to make a new version of a value, his
permissions on the containing resource are not relevant. However, when he wants to change the target of a link,
the old link must be deleted and a new one created, so he needs modify permission on the resource.

	Delete permission (D): Allows the item to be marked as deleted.

	Change rights permission (CR): Allows the permissions granted by the object to be changed.

Each permission in the above list implies all lower-numbered permissions.

	A user’s permission level on a particular object is calculated in the following way:

	
	Make a list of the groups that the user belongs to, including Creator and/or ProjectMember and/or ProjectAdmin if
applicable.

	Make a list of the permissions that she can obtain on the object, by iterating over the permissions
that the object grants. For each permission, if she is in the specified group, add the specified permission to the
list of permissions she can obtain.

	From the resulting list, select the highest-level permission.

	If the result is that she would have no permissions, give her whatever permission UnknownUser would have.

	The format of the object of knora-base:hasPermissions is as follows:

	
	Each permission is represented by the one-letter or two-letter abbreviation given above.

	Each permission abbreviation is followed by a space, then a comma-separated list of groups that the permission is
granted to.

	The IRIs of built-in groups are shortened using the knora-base prefix.

	Multiple permissions are separated by a vertical bar (|).

For example, if an object grants view permission to unknown and known users, and modify permission to project
members, the resulting permission literal would be:

V knora-base:UnknownUser,knora-base:KnownUser|M knora-base:ProjectMember

Administrative Permissions

The following permissions can be set via instances of knora-base:AdministrativePermission on any group belonging to
a project. For users that are members of a number of groups with administrative permissions attached, the final set of
permissions is additive and most permissive. The administrative permissions are stored in a compact format in a single
string, which is the object of the predicate knora-base:hasPermissions attached to an instance of the
knora-base:AdministrativePermission class. The following permission values can be used:

	Resource / Value Creation Permissions:

	ProjectResourceCreateAllPermission:

	description: gives the permission to create resources inside the project.

	usage: used as a value for knora-base:hasPermissions.

	ProjectResourceCreateRestrictedPermission:

	description: gives restricted resource creation permission inside the project.

	usage: used as a value for knora-base:hasPermissions.

	value: RestrictedProjectResourceCreatePermission followed by a comma-separated list of ResourceClasses
the user should only be able to create instances of.

	Project Administration Permissions:

	ProjectAdminAllPermission:

	description: gives the user the permission to do anything on project level, i.e. create new groups, modify all
existing groups (group info, group membership, resource creation permissions, project administration
permissions, and default permissions).

	usage: used as a value for knora-base:hasPermissions.

	ProjectAdminGroupAllPermission:

	description: gives the user the permission to modify group info and group membership on all groups belonging
to the project.

	usage: used as a value for the knora-base:hasPermissions property.

	ProjectAdminGroupRestrictedPermission:

	description: gives the user the permission to modify group info and group membership on certain groups
belonging to the project.

	usage: used as a value for knora-base:hasPermissions

	value: ProjectGroupAdminRestrictedPermission followed by a comma-separated list of knora-base:UserGroup.

	ProjectAdminRightsAllPermission:

	description: gives the user the permission to change the permissions on all objects belonging to the
project (e.g., default permissions attached to groups and permissions on objects).

	usage: used as a value for the knora-base:hasPermissions property.

	Ontology Administration Permissions:

	ProjectAdminOntologyAllPermission:

	description: gives the user the permission to administer the project ontologies

	usage: used as a value for the knora-base:hasPermissions property.

The administrative permissions are stored in a compact format in a single string, which is the object of the predicate
knora-base:hasPermissions attached to an instance of the knora-base:AdministrativePermission class.

	The format of the object of knora-base:hasPermissions is as follows:

	
	Each permission is represented by the name given above.

	Each permission is followed by a space, then if applicable, by a comma separated list of IRIs, as defined above.

	The IRIs of built-in values (e.g., built-in groups, resource classes, etc.) are shortened using the knora-base
prefix knora-base:.

	Multiple permissions are separated by a vertical bar (|).

For example, if an administrative permission grants the knora-base:ProjectMember group the permission to create
all resources (ProjectResourceCreateAllPermission), the resulting administrative permission object with the compact
form literal would be:

<http://data.knora.org/permissions/001>
 rdf:type knora-base:AdministrativePermission ;
 knora-base:forProject <http://data.knora.org/projects/images> ;
 knora-base:forGroup knora-base:ProjectMember ;
 knora-base:hasPermissions "ProjectResourceCreateAllPermission"^^xsd:string .

Default Object Access Permissions

Default Object Access Permissions are used when new objects (resources and/or values) are created. They represent
object access permissions with which the new object will be initially outfitted. As with administrative permissions,
these default object access permissions can be defined for any number of groups. Additionally, they can be also defined
for resource classes and properties.

The following default object access permissions can be attached to groups, resource classes and/or properties via
instances of knora-base:DefaultObjectAccessPermission (described further bellow). The default object access
permissions correspond to the earlier described object access permission:

	Default Restricted View Permission (RV):

	description: any object, created by a user inside a group holding this permission, is restricted to carry this
permission

	value: RV followed by a comma-separated list of knora-base:UserGroup

	Default View Permission (V):

	description: any object, created by a user inside a group holding this permission, is restricted to carry this
permission

	value: V followed by a comma-separated list of knora-base:UserGroup

	Default Modify Permission (M) accompanied by a list of groups.

	description: any object, created by a user inside a group holding this permission, is restricted to carry this
permission

	value: M followed by a comma-separated list of knora-base:UserGroup

	Default Delete Permission (D) accompanied by a list of groups.

	description: any object, created by a user inside a group holding this permission, is restricted to carry this
permission

	value: D followed by a comma-separated list of knora-base:UserGroup

	Default Change Rights Permission (CR) accompanied by a list of groups.

	description: any object, created by a user inside a group holding this permission, is restricted to carry this
permission

	value: CR followed by a comma-separated list of knora-base:UserGroup

A single instance of knora-base:DefaultObjectAccessPermission must always reference a project, but can only
reference either a group (knora-base:forGroup property), a resource class (knora-base:forResourceClass), a
property (knora-base:forProperty), or a combination of resource class and property.

Example default object access permission instance:

<http://data.knora.org/permissions/002>
 rdf:type knora-base:DefaultObjectAccessPermission ;
 knora-base:forProject <http://data.knora.org/projects/images> ;
 knora-base:forGroup knora-base:ProjectMember ;
 knora-base:hasPermissions "CR knora-base:Creator|M knora-base:ProjectMember|V knora-base:KnownUser"^^xsd:string .

This instance is setting default object access permissions to the project member group of a project, giving change
right permission to the creator, modify permission to all project members, and view permission to known users. Further,
this implicitly applies to all resource classes and all their properties inside the project.

Permission Precedence Rules

For both administrative permissions and default object access permissions, the resulting permissions are derived by
applying precedence rules, for the case that the user is member of more than one group.

The following list is sorted by the permission precedence level in descending order:

	permissions on knora-base:ProjectAdmin (highest level)

	permissions on resource classes and property combination (own project)

	permissions on resource classes and property combination (knora-base:SystemProject)

	permissions on resource classes / properties (own project)

	permissions on resource classes / properties (knora-base:SystemProject)

	permissions on custom groups

	permissions on knora-base:ProjectMember

	permissions on knora-base:KnownUser (lowest level)

The permissions on resource classes / properties are only relevant for default object access permissions.

Administrative Permissions: When a user performs an operation requiring administrative permissions, then only
the permissions from the highest level are taken into account. If a user is a member of more than one group on the
same level (only possible for custom groups) then the defined permissions are summed up and all are taken into account.

Default Object Access Permissions: When a user creates a resource or value, then only the default object
permissions from the highest level are applied. If a user is a member of more than one group on the same level
(only possible for custom groups) then the defined permissions are summed up and the most permissive are applied.

In the case of users belonging to the SystemAdmin group, but which are not members of a project and thus no group
belonging to the project, the default object access permissions from the highest defined level will apply.

Implicit Permissions

The knora-base:SystemAdmin group receives implicitly the following permissions:

	receives implicitly ProjectAllAdminPermission for all projects.

	receives implicitly ProjectResourceCreateAllPermission for all projects.

	receives implicitly CR on all objects from all projects.

Theses permissions are baked into the system, and cannot be changed.

Permission Templates

The permission capabilities of Knora are very large, as it needs to be able to satisfy a broad set of requirements.
To simplify permission management for the users, we provide permission templates, which can be used during creation of
new projects, or applied to existing projects. A permission template defines a set of administrative and default object
access permission. Currently, two different templates will be defined OPEN, CLOSED.

Template: OPEN

The OPEN template, defines the following permissions:

	
	The knora-base:ProjectAdmin group:

	
	receives explicitly ProjectResourceCreateAllPermission.

	receives explicitly ProjectAllAdminPermission.

	
	The knora-base:ProjectMember group:

	
	receives explicitly ProjectResourceCreateAllPermission.

	receives explicitly CR for the knora-base:Creator and knora-base:ProjectAdmin group.

	receives explicitly M for the ProjectMember group.

	receives explicitly V for the knora-base:KnownUser group.

Template: CLOSED

The CLOSED template, defined the following permissions:

	
	The knora-base:ProjectAdmin group:

	
	receives explicitly ProjectResourceCreateAllPermission.

	receives explicitly ProjectAllAdminPermission.

	
	The knora-base:ProjectMember group:

	
	receives explicitly ProjectResourceCreateAllPermission.

	receives explicitly CR for the knora-base:ProjectAdmin group.

	receives explicitly M for the ProjectMember group.

Default Permissions Matrix for new Projects

The access control matrix defines what are the default operations a subject (i.e. User), being a member of a built-in
group (represented by row headers), is permitted to perform on an object (represented by column headers). The
different operation abbreviations used are defined as follows:

	C:

	Create - the subject inside the group is allowed to create the object.

	U:

	Update - the subject inside the group is allowed to update the object.

	R:

	Read - the subject inside the group is allowed to read all information about the object.

	D:

	Delete - the subject inside the group is allowed to delete the object.

	P:

	Permission - the subject inside the group is allowed to change the permissions on the object.

	-:

	none - none or not applicable

Default Permissions Matrix for new Projects

 Plans for Knora API v2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Knora API Server Design Documentation

Plans for Knora API v2

	Naming

	Structure

	Redundancy

	Efficiency

	Suitability for non-GUI applications

	Working with multiple projects

	Annotating values

	Typing

	JSON-LD

Naming

In API v1, the same data types are named inconsistently (resinfo,
res_info) or unclearly (value_restype is actually a label).
Version 2 should adopt a clear, consistent naming convention.

Structure

API v1 sometimes uses parallel array structures to represent multiple
complex objects, e.g. the values of resource properties or the items in
a resource’s context. Version 2 should use nested structures instead.

Redundancy

Some information in API v1 is presented redundantly, e.g. resinfo
and resdata, and the __location__ property. This should be
cleaned up.

Efficiency

Some queries, like the resource context query, produce so much data that
they cannot be made efficient. We should consider breaking up these API
calls into smaller chunks.

It should be possible to customise GET requests so that they return only
as much data as the user wants. For example, in Fedora 4’s equivalent of
the resources route with reqtype=full, you can specify whether
you want child resources and incoming references. This would enable
clients to request only the information they actually need, improving
performance and reducing server load.

Suitability for non-GUI applications

When returning the ‘full’ information about a resource, the API currently
includes valueless properties to reflect the possible properties in the
resource type (if a property has no value, or only has values that the user
isn’t allowed to see), unless a property already has a value that the user
isn’t allowed to see, and its cardinality is MustHaveOne or
MayHaveOne. This makes sense from the point of a GUI: the valueless
properties are there to indicate that the user could add values for those
properties. If a property already has a value and its cardinality is
MustHaveOne or MayHaveOne, the user can’t add a value for it, so there
is no reason to include it.

In version 2, it might make more sense to separate information about
resource types from information about resources (rather than mixing
these two kinds of information together in one API response), and to
separate displaying a resource from indicating which properties a
particular user can add.

Working with multiple projects

The user will be able to choose which project to use for an update.

We will handle the case where Project A defines a resource class X, and
Project B declares a resource class Y with additional properties,
asserting that X is a subclass of Y, so that users in Project B can add
these extra properties to resources that already exist in Project A.
Users in project A will want to be able to ignore the extra properties
from Y, or optionally see and use them.

The ontology responder will distinguish between definitions in the
active project’s named graph and definitions added elsewhere, so the
user can choose to see just what’s defined in their own project or to
include definitions from elsewhere.

Annotating values

In API v1, only resources can be annotated. In v2, it will also be
possible to annotate values.

Typing

Each data item should have a consistent data type. In an JSON object,
the same name should always contain a value of the same type. Numbers
should be represented as numbers rather than as strings.

JSON-LD

Consider using JSON-LD [http://json-ld.org/] to specify data types
and semantics within API responses, instead of providing separate JSON
schemas.

The basic idea is just that your API can return JSON like this:

{
 "book": {
 "id": "http://data.knora.org/c5058f3a"
 "title": "Zeitglöcklein des Lebens und Leidens Christi"
 }
}

and it can also include a “context” (which can be embedded in the same
JSON, or provided as the URL of a separate JSON document) specifying
that book is an incunabula:book, and that title means
dc:title. So everything in an API response can have semantics and
type information specified. The idea is that the keys in the JSON stay
short and readable, so someone writing a simple browser-based client can
write book.title in JavaScript and it will work. At the same time, a
more complex, automated client can easily get the semantic and type
information.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Developing the Knora API Server

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

Developing the Knora API Server

	Overview
	Knora Github Repository

	Triple Store

	SIPI

	Starting Fuseki 3
	Locally

	Inside Docker

	Starting GraphDB-SE
	Running Locally

	Running inside Docker

	Build Process
	Building and Running

	Running the automated tests

	Load Testing on Mac OS X

	Continuous Integration

	SBT Build Configuration

	Webapi Server Startup-Flags

	Setup IntelliJ for development of Knora
	Create an IntelliJ Project for the Knora API Server

	Twirl

	Use IntelliJ IDEA’s Debugger with the Knora API Server

	Profile Knora Using VisualVM in IntelliJ

	Documentation Guidelines
	Sections

	Cross-referencing

	Build the documentation

	Installing Sphinx on OS X

	Test Tags

	Testing with Fuseki 2
	How to Write Your Test

	Important

	Docker Cheat Sheet
	Lifecycle

	Starting and Stopping

	Info

	Executing Commands

	Images

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Overview

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Developing the Knora API Server

Overview

	Knora Github Repository

	Triple Store

	SIPI
	Build SIPI Docker Image

	Running SIPI

Developing for the Knora API server requires a complete local installation of Knora. The different parts are:

	The cloned Knora [https://github.com/dhlab-basel/Knora] Github repository

	One of the supplied triple stores in the Knora Github repository (GraphDB-SE 8 or Fuseki 3).

	SIPI by building from source [https://github.com/dhlab-basel/Sipi] or using the docker image [https://hub.docker.com/r/dhlabbasel/sipi/]

Knora Github Repository

$ git clone https://github.com/dhlab-basel/Knora

Triple Store

A number of triplestore implementations are available, including free software [http://www.gnu.org/philosophy/free-sw.en.html] as
well as proprietary options. The Knora API server is tested and configured to
work out of the box with the following triplestores:

	Ontotext GraphDB [http://ontotext.com/products/graphdb/], a high-performance, proprietary triplestore. The Knora
API server is tested with GraphDB Standard Edition and GraphDB Free (which
is proprietary but available free of charge).

	Apache Jena [https://jena.apache.org/], which is free software [http://www.gnu.org/philosophy/free-sw.en.html]. Knora comes bundled with Jena and with
its standalone SPARQL server, Fuseki.

See the chapters on Starting Fuseki 3 and Starting GraphDB-SE for more details.

SIPI

Build SIPI Docker Image

The Sipi docker image needs to be build by hand, as it requires the Kakadu distribution.

To build the image, and push it to the docker hub, follow the following steps:

$ git clone https://github.com/dhlab-basel/docker-sipi
(copy the Kakadu distribution ``v7_8-01382N.zip`` to the ``docker-sipi`` directory)
$ docker build -t dhlabbasel/sipi
$ docker run --name sipi --rm -it -p 1024:1024 dhlabbasel/sipi
(Ctrl-c out of terminal will stop and delete container)
$ docker push dhlabbasel/sipi

Pushing the image to the docker hub requires prior authentication with $ docker login. The user needs to be
registered on hub.docker.com. Also, the user needs to be allowed to push to the dblabbasel organisation.

Running SIPI

To use the docker image stored locally or on the docker hub repository type:

$ docker run --name sipi -d -p 1024:1024 dhlabbasel/sipi

This will create and start a docker container with the dhlabbasel/sipi image in the background. The default
behaviour is to start Sipi by calling the following command:

$ /sipi/local/bin/sipi -config /sipi/config/sipi.knora-test-config.lua

To override this default behaviour, start the container by supplying another config file:

$ docker run --name sipi \
 -d \
 -p 1024:1024 \
 dhlabbasel/sipi \
 /sipi/local/bin/sipi -config /sipi/config/sipi.config.lua

You can also mount a directory (the local directory in this example), and use a config file that is outside of the
docker container:

$ docker run --name sipi \
 -d \
 -p 1024:1024 \
 -v $PWD:/localdir \
 dhlabbasel/sipi \
 /sipi/local/bin/sipi -config /localdir/sipi.knora-test-config.lua

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Starting Fuseki 3

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Developing the Knora API Server

Starting Fuseki 3

Locally

Inside the Knora API server git repository, there is a folder called
triplestores/fuseki containing a script named fuseki-server. All needed
configuration files are in place. To start Fuseki 3, just run this
script:

$./fuseki-server

Inside Docker

We can use the dhlabbasel:fuseki docker image from docker hub:

$ docker run --rm -it -p 3030:3030 dhlabbasel/fuseki

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Starting GraphDB-SE

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Developing the Knora API Server

Starting GraphDB-SE

Inside the Knora API server git repository, there is a folder called /triplestores/graphdb-se containing the
latest supported version of the GraphDB-SE distribution archive.

Running Locally

Unzip graphdb-se-x.x.x-dist.zip to a place of your choosing and run the following:

$ cd /to/unziped/location
$./bin/graphdb -Dgraphdb.license.file=/path/to/GRAPHDB_SE.license

Running inside Docker

Important Steps

To be able to successfully run GraphDB inside docker two important steps need to be done beforhand:

	Install Docker from http://docker.com.

	Copy the GraphDB-SE license file into a folder of you choosing and name it GRAPHDB_SE.license. We will mount
this folder into the docker container, so that the license can be used by GraphDB running inside the container.

Usage

 $ docker run --rm -it -v /path/to/license/folder:/external -p 7200:7200 dhlabbasel/graphdb

- ``--rm`` removes the container as soon as you stop it
- ``-p`` forwards the exposed port to your host (or if you use boot2docker to this IP)
- ``-it`` allows interactive mode, so you see if something get's deployed

After the GraphDB inside the docker container has started, you can find the GraphDB workbench here: http://localhost:7200

Above, we create and start a transient container (--rm flag). To create a container that we can stop and start again
at a later time, follow the following steps:

 $ docker run --name graphdb -d -t -v /path/to/license/folder:/external -p 7200:7200 dhlabbasel/graphdb

 (to see the console output, attach to the container; to detach press Ctrl-c)
 $ docker attach graphdb

 (to stop the container)
 $ docker stop graphdb

 (to start the container again)
 $ docker start graphdb

 (to remove the container; needs to be stopped)
 $ docker rm graphdb

- ``--name`` give the container a name
- ``-d`` run container in background and print container ID
- ``-t`` allocate a pseudo TTY, so you see the console output
- ``-p`` forwards the exposed port to your host

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Build Process

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Developing the Knora API Server

Build Process

	Building and Running
	Using Fuseki

	Using GraphDB

	Running the automated tests
	Running Tests with Fuseki

	Running Tests with GraphDB

	Load Testing on Mac OS X

	Continuous Integration

	SBT Build Configuration

	Webapi Server Startup-Flags
	loadDemoData - Flag

	allowResetTriplestoreContentOperationOverHTTP - Flag

	TODO: complete this file.

	
	SBT

	Using GraphDB for development and how to initializing the ‘knora-test-unit’ repository

	Using Fuseki for development

Building and Running

Using Fuseki

Start the provided Fuseki triplestore:

$ cd KNORA_PROJECT_DIRECTORY/triplestores/fuseki
$./fuseki-server

Then in another terminal, load some test data into the triplestore:

$ cd KNORA_PROJECT_DIRECTORY/webapi/scripts
$./fuseki-load-test-data.sh

Then go back to the webapi root directory and use SBT to start the API server:

$ cd KNORA_PROJECT_DIRECTORY/webapi
$ sbt
> compile
> re-start

To shut down the Knora API server:

> re-stop

Using GraphDB

The archive with the newest supported version of the GraphDB-SE triplestore is provided under
`triplestores/graphdb-se`. Please keep in mind, that GraphDB-SE must be licensed separately by the user, and that
no license file is provided in the repository. GraphDB-SE will not run without a license file.

Unzip graphdb-se-x.x.x-dist.zip to a place of your choosing and run the following, to start graphdb:

$ cd /to/unziped/location
$./bin/graphdb -Dgraphdb.license.file=/path/to/GRAPHDB_SE.license

After the GraphDB inside the docker container has started, you can find the GraphDB workbench here: http://localhost:7200

Then in another terminal, load some test data into the triplestore:

$ cd KNORA_PROJECT_DIRECTORY/webapi/scripts
$./graphdb-se-local-init-knora-test.sh

Then go back to the webapi root directory and use SBT to start the API server:

$ cd KNORA_PROJECT_DIRECTORY/webapi
$ sbt
> compile
> re-start

To shut down the Knora API server:

> re-stop

Running the automated tests

Running Tests with Fuseki

Make sure you’ve started Fuseki as shown above. Then at the SBT prompt:

> fuseki:test

Running Tests with GraphDB

Make sure GraphDB is running (as described earlier).

Then in another terminal, initialise the repository used for automated testing:

$ cd KNORA_PROJECT_DIRECTORY/webapi/scripts
$./graphdb-se-local-init-knora-test-unit.sh

Run the automated tests from sbt:

> graphdb:test

Load Testing on Mac OS X

To test the Knora API server with many concurrent connections on Mac OS X, you
will need to adjust some kernel parameters to allow more open connections, to
recycle ephemeral ports more quickly, and to use a wider range of ephemeral
port numbers. The script webapi/scripts/os-x-kernel-test-config.sh will do
this.

Continuous Integration

For continuous integration testing, we use Travis-CI. Every commit pushed to the git repository or every
pull request, triggers the build. Additionaly, in Github there is a litle checkmark beside every commit, signaling the
status of the build (successful, unsucessful, ongoing).

The build that is executed on Travis-CI is defined in .travis.yml situated in the root folder of the project, and
looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	dist: trusty
sudo: required
git:
 depth: 1
language: scala
scala:
- 2.12.1
jdk:
- oraclejdk8
cache:
 directories:
 - $HOME/.ivy2
script:
- cd triplestores/fuseki/ && ./fuseki-server &
- cd webapi/ && sbt test
notifications:
 slack:
 secure: AJZARDC7P6bwjFwk6gpe+p2ozLj+bH3h83PapfCTL0xi7frHd4y6/jXOs9ac+m7ia5FlnzgBxrf0lmaE+IkqlRzxo5dPNYkDIbMC3nrf48kS+uQjf87X1Pn6bDVBLL56L1xIeaEXAqLLWNZ8m1UQ3ykVHgUbUbimjm43eCMpUiretgOqQgreZuLGVxPDU4KrGYZ93FvT2Nzp1Iagld0KXJ1up/uKlpSZAIpJPhgWYIhSGwj9hYG50iENvtsOX/zTe2hjhKWaPmVxHWo8qNyyHfX/+3ODQhvKu3LQsFXbW8WQ1r86EUDrGWeT6mlCYbjR1Wk/7wEKvGts/7vnTNJ8H2xDG9ADc4zIzIpnz0+gndIXuguxuMZEdm1H9okcDqraa4OV01bobr43RVC4hTZCiEBt7wCd/c+C1lJahAQUQoKsbmp5idKrjUyESJ0ZbU6hgkKeOvEvUqv0msYJGWW/C5BlUlro08AgZ9h6nOfu8jJQ49x9QbSWLjTVDg8CEq3w8FDATGA6FKdDqgmsi/3ROjgdewPgyxE3XZ2UpAbAdMPeuGvFoU91X8gScm6ys6abLy0vdCL3LyqmBu/Vzdg1RzU7oqUqSbR5LSMh8pwAwy26j6Awp+pDEzBtyL59yN6r6wgxmbJ5KT+XJReEH6Ao0C6ay23E8T/3YmI3qbjX8xE=

It basically means:

	use the virtual machine based environment (line 1)

	checkout git with a shorter history (lines 2-3)

	add scala libraries (lines 4-6)

	add oracle jdk version 8 (lines 7-8)

	cache some directories between builds to make it faster (line 9-11)

	start fuseki and afterwards start all tests (lines 12-14)

	send notification to our slack channel (lines 15-17)

SBT Build Configuration

import sbt._
import sbt.Keys._
import spray.revolver.RevolverPlugin._
import NativePackagerHelper._

connectInput in run := true

// Bring the sbt-aspectj settings into this build
//aspectjSettings

lazy val webapi = (project in file(".")).
 configs(
 FusekiTest,
 FusekiTomcatTest,
 GraphDBTest,
 GraphDBFreeTest,
 SesameTest,
 EmbeddedJenaTDBTest,
 IntegrationTest
).
 settings(webApiCommonSettings: _*).
 settings(inConfig(FusekiTest)(
 Defaults.testTasks ++ Seq(
 fork := true,
 javaOptions ++= javaFusekiTestOptions,
 testOptions += Tests.Argument("-oDF") // show full stack traces and test case durations
)
): _*).
 settings(inConfig(FusekiTomcatTest)(
 Defaults.testTasks ++ Seq(
 fork := true,
 javaOptions ++= javaFusekiTomcatTestOptions,
 testOptions += Tests.Argument("-oDF") // show full stack traces and test case durations
)
): _*).
 settings(inConfig(GraphDBTest)(
 Defaults.testTasks ++ Seq(
 fork := true,
 javaOptions ++= javaGraphDBTestOptions,
 testOptions += Tests.Argument("-oDF") // show full stack traces and test case durations
)
): _*).
 settings(inConfig(GraphDBFreeTest)(
 Defaults.testTasks ++ Seq(
 fork := true,
 javaOptions ++= javaGraphDBFreeTestOptions,
 testOptions += Tests.Argument("-oDF") // show full stack traces and test case durations
)
): _*).
 settings(inConfig(SesameTest)(
 Defaults.testTasks ++ Seq(
 fork := true,
 javaOptions ++= javaSesameTestOptions,
 testOptions += Tests.Argument("-oDF") // show full stack traces and test case durations
)
): _*).
 settings(inConfig(EmbeddedJenaTDBTest)(
 Defaults.testTasks ++ Seq(
 fork := true,
 javaOptions ++= javaEmbeddedJenaTDBTestOptions,
 testOptions += Tests.Argument("-oDF") // show full stack traces and test case durations
)
): _*).
 settings(inConfig(IntegrationTest)(
 Defaults.itSettings ++ Seq(
 fork := true,
 javaOptions ++= javaIntegrationTestOptions,
 testOptions += Tests.Argument("-oDF") // show full stack traces and test case durations
)
): _*).
 settings(
 libraryDependencies ++= webApiLibs,
 scalacOptions ++= Seq("-feature", "-unchecked", "-deprecation", "-Yresolve-term-conflict:package"),
 logLevel := Level.Info,
 fork in run := true,
 javaOptions in run ++= javaRunOptions,
 //javaOptions in run <++= AspectjKeys.weaverOptions in Aspectj,
 //javaOptions in Revolver.reStart <++= AspectjKeys.weaverOptions in Aspectj,
 mainClass in (Compile, run) := Some("org.knora.webapi.Main"),
 fork in Test := true,
 javaOptions in Test ++= javaTestOptions,
 parallelExecution in Test := false,
 // enable publishing the jar produced by `sbt it:package`
 publishArtifact in (IntegrationTest, packageBin) := true
).
 settings(// enable deployment staging with `sbt stage`
 mappings in Universal ++= {
 // copy the scripts folder
 directory("scripts") ++
 // copy configuration files to config directory
 contentOf("src/main/resources").toMap.mapValues("config/" + _)
 },
 // add 'config' directory first in the classpath of the start script,
 scriptClasspath := Seq("../config/") ++ scriptClasspath.value,
 // add license
 licenses := Seq(("GNU AGPL", url("https://www.gnu.org/licenses/agpl-3.0"))),
 // need this here, but why?
 mainClass in Compile := Some("org.knora.webapi.Main")
).
 settings(Revolver.settings: _*).
 enablePlugins(SbtTwirl). // Enable the SbtTwirl plugin
 enablePlugins(JavaAppPackaging) // Enable the sbt-native-packager plugin

lazy val webApiCommonSettings = Seq(
 organization := "org.knora",
 name := "webapi",
 version := "0.1.0-beta",
 ivyScala := ivyScala.value map { _.copy(overrideScalaVersion = true) },
 scalaVersion := "2.12.1"
)

lazy val akkaVersion = "2.4.16"
lazy val akkaHttpVersion = "10.0.3"

lazy val webApiLibs = Seq(
 // akka
 "com.typesafe.akka" %% "akka-actor" % akkaVersion,
 "com.typesafe.akka" %% "akka-agent" % akkaVersion,
 "com.typesafe.akka" %% "akka-stream" % akkaVersion,
 "com.typesafe.akka" %% "akka-slf4j" % akkaVersion,
 "com.typesafe.akka" %% "akka-http" % akkaHttpVersion,
 "com.typesafe.akka" %% "akka-http-xml" % akkaHttpVersion,
 "com.typesafe.akka" %% "akka-http-spray-json" % akkaHttpVersion,

 "org.scala-lang.modules" %% "scala-xml" % "1.0.6",

 // testing
 "org.scalatest" %% "scalatest" % "3.0.0" % "test",
 //CORS support
 "ch.megard" %% "akka-http-cors" % "0.1.10",
 // jena
 "org.apache.jena" % "apache-jena-libs" % "3.0.0" exclude("org.slf4j", "slf4j-log4j12"),
 "org.apache.jena" % "jena-text" % "3.0.0" exclude("org.slf4j", "slf4j-log4j12"),
 // http client
 // "net.databinder.dispatch" %% "dispatch-core" % "0.11.2",
 // logging
 "com.typesafe.scala-logging" %% "scala-logging" % "3.5.0",
 "ch.qos.logback" % "logback-classic" % "1.1.7",
 // input validation
 "commons-validator" % "commons-validator" % "1.4.1",
 // authentication
 "org.bouncycastle" % "bcprov-jdk15on" % "1.56",
 "org.springframework.security" % "spring-security-core" % "4.2.1.RELEASE",
 // caching
 "net.sf.ehcache" % "ehcache" % "2.10.0",
 // monitoring - disabled for now
 //"org.aspectj" % "aspectjweaver" % "1.8.7",
 //"org.aspectj" % "aspectjrt" % "1.8.7",
 //"io.kamon" %% "kamon-core" % "0.5.2",
 //"io.kamon" %% "kamon-spray" % "0.5.2",
 //"io.kamon" %% "kamon-statsd" % "0.5.2",
 //"io.kamon" %% "kamon-log-reporter" % "0.5.2",
 //"io.kamon" %% "kamon-system-metrics" % "0.5.2",
 //"io.kamon" %% "kamon-newrelic" % "0.5.2",
 // other
 //"javax.transaction" % "transaction-api" % "1.1-rev-1",
 "org.apache.commons" % "commons-lang3" % "3.4",
 "commons-io" % "commons-io" % "2.4",
 "commons-beanutils" % "commons-beanutils" % "1.9.2", // not used by us, but need newest version to prevent this problem: http://stackoverflow.com/questions/14402745/duplicate-classes-in-commons-collections-and-commons-beanutils
 "org.jodd" % "jodd" % "3.2.6",
 "joda-time" % "joda-time" % "2.9.1",
 "org.joda" % "joda-convert" % "1.8",
 "com.sksamuel.diff" % "diff" % "1.1.11",
 "org.xmlunit" % "xmlunit-core" % "2.1.1",
 // testing
 "com.typesafe.akka" %% "akka-testkit" % akkaVersion % "test, fuseki, fuseki-tomcat, graphdb, tdb, it",
 "com.typesafe.akka" %% "akka-http-testkit" % akkaHttpVersion % "test, fuseki, fuseki-tomcat, graphdb, tdb, it",
 "com.typesafe.akka" %% "akka-stream-testkit" % akkaVersion % "test, fuseki, fuseki-tomcat, graphdb, tdb, it",
 "org.scalatest" %% "scalatest" % "3.0.0" % "test, fuseki, fuseki-tomcat, graphdb, tdb, it",
 "org.eclipse.rdf4j" % "rdf4j-rio-turtle" % "2.0M3",
 "org.rogach" %% "scallop" % "2.0.5",
 "com.google.gwt" % "gwt-servlet" % "2.8.0",
 "net.sf.saxon" % "Saxon-HE" % "9.7.0-14"
)

lazy val javaRunOptions = Seq(
 // "-showversion",
 "-Xms2048m",
 "-Xmx4096m"
 // "-verbose:gc",
 //"-XX:+UseG1GC",
 //"-XX:MaxGCPauseMillis=500"
)

lazy val javaTestOptions = Seq(
 // "-showversion",
 "-Xms2048m",
 "-Xmx4096m"
 // "-verbose:gc",
 //"-XX:+UseG1GC",
 //"-XX:MaxGCPauseMillis=500",
 //"-XX:MaxMetaspaceSize=4096m"
)

lazy val FusekiTest = config("fuseki") extend(Test)
lazy val javaFusekiTestOptions = Seq(
 "-Dconfig.resource=fuseki.conf"
) ++ javaTestOptions

lazy val FusekiTomcatTest = config("fuseki-tomcat") extend(Test)
lazy val javaFusekiTomcatTestOptions = Seq(
 "-Dconfig.resource=fuseki-tomcat.conf"
) ++ javaTestOptions

lazy val GraphDBTest = config("graphdb") extend(Test)
lazy val javaGraphDBTestOptions = Seq(
 "-Dconfig.resource=graphdb.conf"
) ++ javaTestOptions

lazy val GraphDBFreeTest = config("graphdb-free") extend(Test)
lazy val javaGraphDBFreeTestOptions = Seq(
 "-Dconfig.resource=graphdb-free.conf"
) ++ javaTestOptions

lazy val SesameTest = config("sesame") extend(Test)
lazy val javaSesameTestOptions = Seq(
 "-Dconfig.resource=sesame.conf"
) ++ javaTestOptions

lazy val EmbeddedJenaTDBTest = config("tdb") extend(Test)
lazy val javaEmbeddedJenaTDBTestOptions = Seq(
 "-Dconfig.resource=jenatdb.conf"
) ++ javaTestOptions

// The 'IntegrationTest' config does not need to be created here, as it is a built-in config!
// The standard testing tasks are available, but must be prefixed with 'it:', e.g., 'it:test'
// The test need to be stored in the 'it' (and not 'test') folder. The standard source hierarchy is used, e.g., 'src/it/scala'
lazy val javaIntegrationTestOptions = Seq(
 "-Dconfig.resource=graphdb.conf"
) ++ javaTestOptions

Webapi Server Startup-Flags

The Webapi-Server can be started with a number of flags. These flags can be supplied either to the reStart or the
run command in sbt, e.g.,:

$ sbt
> reStart flag

or

$sbt
> run flag

loadDemoData - Flag

When the webapi-server is started with the loadDemoData flag, then at startup, the data which is configured in
application.conf under the app.triplestore.rdf-data key is loaded into the triplestore, and any data in the
triplestore is removed beforehand.

Usage:

$ sbt
> reStart loadDemoData

allowResetTriplestoreContentOperationOverHTTP - Flag

When the webapi.server is started with the allowResetTriplestoreContentOperationOverHTTP flag, then the
v1/store/ResetTriplestoreContent route is activated. This route accepts a POST request, with a json payload
consisting of the following exemplary content:

[
 {
 "path": "../knora-ontologies/knora-base.ttl",
 "name": "http://www.knora.org/ontology/knora-base"
 },
 {
 "path": "../knora-ontologies/knora-dc.ttl",
 "name": "http://www.knora.org/ontology/dc"
 },
 {
 "path": "../knora-ontologies/salsah-gui.ttl",
 "name": "http://www.knora.org/ontology/salsah-gui"
 },
 {
 "path": "_test_data/ontologies/incunabula-onto.ttl",
 "name": "http://www.knora.org/ontology/incunabula"
 },
 {
 "path": "_test_data/all_data/incunabula-data.ttl",
 "name": "http://www.knora.org/data/incunabula"
 }
]

This content corresponds to the payload sent with the ResetTriplestoreContent message, defined inside the
org.knora.webapi.messages.v1.store.triplestoremessages package. The path being the relative path to the ttl
file which will be loaded into a named graph by the name of name.

Usage:

$ sbt
> reStart allowResetTriplestoreContentOperationOverHTTP

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Setup IntelliJ for development of Knora

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Developing the Knora API Server

Setup IntelliJ for development of Knora

	Create an IntelliJ Project for the Knora API Server

	Twirl

	Use IntelliJ IDEA’s Debugger with the Knora API Server

	Profile Knora Using VisualVM in IntelliJ

Create an IntelliJ Project for the Knora API Server

	Download and install IntelliJ IDEA [https://www.jetbrains.com/idea/].

	Follow the installation procedure and install the Scala plugin

[image: screenshot 'Install Scala Plugin']
screenshot ‘Install Scala Plugin’

	Import the webapi directory in the Knora source tree: Import Project -> Choose the option module SBT

[image: screenshot 'import existing SBT project']
screenshot ‘import existing SBT project’

	make sure that the tab size is set correctly to 4 spaces (so you can use automatic code reformatting): Preferences -> Code Style -> Scala:

[image: screenshot 'setting tab size']
screenshot ‘setting tab size’

Twirl

By default, Intellij excludes some folders like the twirl template files. To include them, go to Project Structure and remove target/scala-2.1*/twirl from excluded folders.
Then Intellij will correctly resolve the references to the template files.

Use IntelliJ IDEA’s Debugger with the Knora API Server

	Create an application configuration:

[image: screenshot 'edit application config']
screenshot ‘edit application config’

[image: screenshot 'create application configuration']
screenshot ‘create application configuration’

Fill in the configuration details:

[image: screenshot 'change application configuration']
screenshot ‘change application configuration’

	Click on the debugging symbol to start the application with a
debugger attached

[image: screenshot 'debug']
screenshot ‘debug’

	Click on a line-number to add a breakpoint

[image: screenshot 'set a breakpoint']
screenshot ‘set a breakpoint’

Profile Knora Using VisualVM in IntelliJ

First, download and install VisualVM [https://visualvm.github.io/].

Then, in IntelliJ, under Preferences -> Plugins, search for the VisualVM
Launcher [https://plugins.jetbrains.com/plugin/7115-visualvm-launcher], click on “Search in repositories”, install the plugin, and restart
IntelliJ. IntelliJ’s toolbar should now contain a button with a green triangle
on an orange circle, with the tooltip “Run with VisualVM”:

[image: screenshot 'Run with VisualVM button']
screenshot ‘Run with VisualVM button’

You can use this button to run the class org.knora.webapi.Main and profile it in VisualVM.
The first time you do this, IntelliJ will ask you for the path to the VisualVM executable.
On macOS this is /Applications/VisualVM.app/Contents/MacOS/visualvm.

When VisualVM starts, it will open a window like this:

[image: screenshot 'VisualVM overview']
screenshot ‘VisualVM overview’

To use the profiler, click on the “Sampler” tab, then on the “CPU” button:

[image: screenshot 'VisualVM sampler']
screenshot ‘VisualVM sampler’

Now run some Knora API operations that you’re interested in profiling,
preferably several times to allow the sampler to collect enough data. Then
click on the “Snapshot” button:

[image: screenshot 'VisualVM snapshot button']
screenshot ‘VisualVM snapshot button’

In the snapshot, you’ll see a list of threads that were profiled:

[image: screenshot 'VisualVM snapshot']
screenshot ‘VisualVM snapshot’

You can then browse the call tree for each thread, looking for Knora method
calls, to see the total time spent in each method:

[image: screenshot 'VisualVM call tree']
screenshot ‘VisualVM call tree’

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Documentation Guidelines

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Developing the Knora API Server

Documentation Guidelines

	Sections

	Cross-referencing

	Build the documentation

	Installing Sphinx on OS X

The Knora documentation uses reStructuredText [http://docutils.sourceforge.net/rst.html] as its markup language and is
built using Sphinx [http://sphinx.pocoo.org].

For more details, see The Sphinx Documentation [http://sphinx.pocoo.org/contents.html]
and Quick reStructuredText [http://docutils.sourceforge.net/docs/user/rst/quickref.html].

Sections

Section headings are very flexible in reST. We use the following convention in
the Knora documentation based on the Python Documentation Conventions [https://docs.python.org/devguide/documenting.html]:

	# (over and under) for parts

	* (over and under) for chapters

	= for sections

	- for subsections

	^ for subsubsections

	~ for subsubsubsections

Cross-referencing

Sections that may be cross-referenced across the documentation should be marked
with a reference. To mark a section use .. _ref-name: before the section
heading. The section can then be linked with :ref:`ref-name`. These are
unique references across the entire documentation.

For example:

.. _knora_part::

##########
Knora Part
##########

.. _knora-chapter:

Knora Chapter

This is the chapter documentation.

.. _knora-section:

Knora Section
=============

Knora Subsection

Here is a reference to "knora section": :ref:`knora-section` which will have the
name "Knora Section".

Build the documentation

First install Sphinx [http://sphinx.pocoo.org]. See below.

For the html version of the docs:

sbt sphinx:generateHtml

open <project-dir>/akka-docs/target/sphinx/html/index.html

For the pdf version of the docs:

sbt sphinx:generatePdf

open <project-dir>/akka-docs/target/sphinx/latex/AkkaJava.pdf
or
open <project-dir>/akka-docs/target/sphinx/latex/AkkaScala.pdf

Installing Sphinx on OS X

Install Homebrew [https://github.com/mxcl/homebrew].

Install Python with Homebrew:

brew install python

Homebrew will automatically add Python executable to your $PATH and pip is a part of the default Python installation with Homebrew.

More information in case of trouble: Homebrew and Python [https://github.com/mxcl/homebrew/wiki/Homebrew-and-Python].

Install sphinx:

pip install sphinx

Install the BasicTeX package [http://www.tug.org/mactex/morepackages.html].

Add texlive bin to $PATH:

export TEXLIVE_PATH=/usr/local/texlive/2015basic/bin/universal-darwin
export PATH=$TEXLIVE_PATH:$PATH

Add missing tex packages:

sudo tlmgr update --self
sudo tlmgr install titlesec
sudo tlmgr install framed
sudo tlmgr install threeparttable
sudo tlmgr install wrapfig
sudo tlmgr install helvetic
sudo tlmgr install courier
sudo tlmgr install multirow

If you get the error unknown locale: UTF-8 when generating the documentation, the solution is to define the following environment variables:

export LANG=en_GB.UTF-8
export LC_ALL=en_GB.UTF-8

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Test Tags

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Developing the Knora API Server

Test Tags

Tags can be used to mark tests, which can then be used to only run tests
with a certain tag, or exclude them.

There is now the org.knora.webapi.testing.tags.SipiTest tag (in the
test folder), which marks tests that require the Sipi image server.
These tests can be excluded from running with the following command in
sbt:

test-only * -- -l org.knora.webapi.testing.tags.SipiTest

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Testing with Fuseki 2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Developing the Knora API Server

Testing with Fuseki 2

Inside the Knora API server git repository, there is a folder called
_fuseki containing a script named fuseki-server. All needed
configuration files are in place. To start Fuseki 2, just run this
script.

How to Write Your Test

	Inside a test, at the beginning, add the following (change the paths
to the test data as needed):

val rdfDataObjects = List (
 RdfDataObject(path = "_test_data/ontologies/knora-base.ttl", name = "http://www.knora.org/ontology/knora-base"),
 RdfDataObject(path = "_test_data/ontologies/knora-dc.ttl", name = "http://www.knora.org/ontology/dc"),
 RdfDataObject(path = "_test_data/ontologies/salsah-gui.ttl", name = "http://www.knora.org/ontology/salsah-gui"),
 RdfDataObject(path = "_test_data/ontologies/incunabula-onto.ttl", name = "http://www.knora.org/ontology/incunabula"),
 RdfDataObject(path = "_test_data/responders.v1.ValuesResponderV1Spec/incunabula-data.ttl", name = "http://www.knora.org/data/incunabula")
)

"Reload data " in {
 storeManager ! ResetTripleStoreContent(rdfDataObjects)
 expectMsg(15.seconds, ResetTripleStoreContentACK())
}

	In the config section add fuseki as the dbtype:

app {
 triplestore {
 //dbtype = "embedded-jena-tdb"
 dbtype = "fuseki"
 ...
}

Important

The reloading of the test data should be always done at the
beginning of the test, because when using Fuseki in combination with
reload-on-start, the data is not loaded in time (when the actor
starts), so that the tests already run without all the data inside the
triple store.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Docker Cheat Sheet

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Developing the Knora API Server

Docker Cheat Sheet

	Lifecycle

	Starting and Stopping

	Info

	Executing Commands

	Images

A complete cheat sheet can be found here [https://github.com/wsargent/docker-cheat-sheet]

Lifecycle

	[docker create](https://docs.docker.com/reference/commandline/create) creates a container but does not start it.

	[docker run](https://docs.docker.com/reference/commandline/run) creates and starts a container in one operation.

	[docker rename](https://docs.docker.com/engine/reference/commandline/rename/) allows the container to be renamed.

	[docker rm](https://docs.docker.com/reference/commandline/rm) deletes a container.

	[docker update](https://docs.docker.com/engine/reference/commandline/update/) updates a container’s resource limits.

If you want a transient container, docker run --rm will remove the container after it stops.

If you want to map a directory on the host to a docker container, docker run -v $HOSTDIR:$DOCKERDIR.

Starting and Stopping

	[docker start](https://docs.docker.com/reference/commandline/start) starts a container so it is running.

	[docker stop](https://docs.docker.com/reference/commandline/stop) stops a running container.

	[docker restart](https://docs.docker.com/reference/commandline/restart) stops and starts a container.

	[docker pause](https://docs.docker.com/engine/reference/commandline/pause/) pauses a running container, “freezing” it in place.

	[docker attach](https://docs.docker.com/reference/commandline/attach) will connect to a running container.

Info

	[docker ps](https://docs.docker.com/reference/commandline/ps) shows running containers.

	[docker logs](https://docs.docker.com/reference/commandline/logs) gets logs from container. (You can use a custom log driver, but logs is only available for json-file and journald in 1.10)

	[docker inspect](https://docs.docker.com/reference/commandline/inspect) looks at all the info on a container (including IP address).

	[docker events](https://docs.docker.com/reference/commandline/events) gets events from container.

	[docker port](https://docs.docker.com/reference/commandline/port) shows public facing port of container.

	[docker top](https://docs.docker.com/reference/commandline/top) shows running processes in container.

	[docker stats](https://docs.docker.com/reference/commandline/stats) shows containers’ resource usage statistics.

	[docker diff](https://docs.docker.com/reference/commandline/diff) shows changed files in the container’s FS.

docker ps -a shows running and stopped containers.

docker stats --all shows a running list of containers.

Executing Commands

	[docker exec](https://docs.docker.com/reference/commandline/exec) to execute a command in container.

To enter a running container, attach a new shell process to a running container called foo, use: docker exec -it foo /bin/bash.

Images

Images are just [templates for docker containers](https://docs.docker.com/engine/understanding-docker/#how-does-a-docker-image-work).

	[docker images](https://docs.docker.com/reference/commandline/images) shows all images.

	[docker build](https://docs.docker.com/reference/commandline/build) creates image from Dockerfile.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Using API V1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

Using API V1

	Introduction: Using API V1
	RESTful API

	Knora IRIs

	Different API Operations

	V1 Path Segment

	Knora API Response Format

	Placeholder host in sample URLs

	Authentication

	Reading and Searching Resources
	Get the Representation of a Resource by its IRI

	Get Information about a Resource Class

	Get all the Vocabularies

	Search for Resources

	Get a Graph of Resources

	Get Hierarchical Lists

	XML to Standoff Mapping
	The Knora Standard Mapping

	Creating a custom Mapping

	Adding Resources
	Adding Resources without a digital Representation

	Adding Resources with a digital Representation

	Response to a Resource Creation

	Changing a resource’s label

	Adding Multiple Resources in a Single Request

	Reading Values
	Reading a Value

	Getting a Value’s Version History

	Getting a Linking Value

	Adding a Value
	Adding a Property Value

	Response on Value Creation

	Changing a Value
	Modifying a Property Value

	Modifying a File Value

	Response on Value Change

	Deleting Resources and Values
	Mark a Resource as Deleted

	Mark a Value as Deleted

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Introduction: Using API V1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Using API V1

Introduction: Using API V1

RESTful API

Knora API V1 is a RESTful API that allows for reading and adding of resources from and to Knora and changing their values
using HTTP requests. The actual data is submitted as JSON (request and response format). The diverse HTTP methods are applied
according to the widespread practice of RESTful APIs: GET for reading, POST for adding, PUT for changing resources and values, and DELETE to delete resources or values (see RESTful_API [http://www.restapitutorial.com/lessons/httpmethods.html]).

Knora IRIs

Every resource that is created or hosted by Knora is identified by a unique id, a so called Internationalized Resource Identifier (IRI).
The IRI is required for every API operation to identify the resource in question. A Knora IRI has itself the format of a URL. For some API operations,
the IRI has to be URL-encoded (HTTP GET requests).

Different API Operations

	In the following sections, the diverse API operations are described including their request and response formats:

	
	Reading and Searching Resources: Get a specific resource or resource class by its IRI or search for resources

	Adding Resources: Create a new resource

	Reading Values: Get a specific value or its version history

	Adding a Value: Add values to a resource

	Changing a Value: Change the values of a resource

	Deleting Resources and Values: Delete resources and values

V1 Path Segment

Every request to API V1 includes v1 as a path segment, e.g. http://host/v1/resources/http%3A%2F%2Fdata.knora.org%2Fc5058f3a.
Accordingly, requests to another version of the API will require another path segment.

Knora API Response Format

In case an API request could be handled successfully, Knora responds with a 200 HTTP status code. The actual answer from Knora (the representation of the requested resource or information about the executed API operation)
is sent in the HTTP body, encoded as JSON (using UTF-8). In this JSON, an API specific status code is sent (member status).

The JSON formats are formally defined as TypeScript interfaces (located in salsah/src/typescript_interfaces). Build the HTML documentation of these interfaces by executing make jsonformat (see docs/Readme.md for further instructions).

Placeholder host in sample URLs

Please note that all the sample URLs used in this documentation contain host as a placeholder. The placeholder host has to be
replaced by the actual hostname (and port) of the server the Knora instance is running on.

Authentication

For all API operations that target at changing resources or values, the client has to provide credentials (username and password)
so that the API server can authenticate the user making the request. When using the SALSAH web interface, after logging in a session is established (cookie based).
When using the API with another client application, credentials can be sent as a part of the HTTP header or as parts of the URL (see Authentication in the Knora API Server).

Also when reading resources authentication my be needed as resources and their values may have restricted view permissions.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Reading and Searching Resources

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Using API V1

Reading and Searching Resources

	Get the Representation of a Resource by its IRI
	Simple Request of a Resource (full Resource Request)
	Provide Request Parameters

	Obtain an HTML Representation of a Resource

	Get only the Properties belonging to a Resource

	Get Information about a Resource Class
	Get a Resource Class by its IRI

	Get all the Property Types of a Resource Class or a Vocabulary

	Get the Resource Classes of a Vocabulary

	Get all the Vocabularies

	Search for Resources
	Search for Resources by their Label

	Fulltext Search

	Extended Search for Resources

	Get a Graph of Resources

	Get Hierarchical Lists

In order to get an existing resource, the HTTP method GET has to be used.
The request has to be sent to the Knora server using the resources path segment (depending on the type of request, this segment has to be exchanged, see below).
Reading resources may require authentication since some resources may have restricted viewing permissions.

Get the Representation of a Resource by its IRI

Simple Request of a Resource (full Resource Request)

A resource can be obtained by making a GET request to the API providing its IRI. Because a Knora IRI has the format of a URL, its IRI has to be URL encoded.

In order to get the resource with the IRI http://data.knora.org/c5058f3a (an incunabula book contained in the test data), make a HTTP GET request to the resources route
(path segment resources in the API call) and append the URL encoded IRI:

HTTP GET to http://host/v1/resources/http%3A%2F%2Fdata.knora.org%2Fc5058f3a

More formalized, the URL looks like this:

HTTP GET to http://host/v1/resources/resourceIRI

	As an answer, the client receives a JSON that represents the requested resource. It has the following members:

	
	status: The Knora status code, 0 if everything went well

	userdata: Data about the user that made the request

	resinfo: Data describing the requested resource and its class

	resdata: Short information about the resource and its class (including information about the given user’s permissions on the resource)

	incoming: Resources pointing to the requested resource

	props: Properties of the requested resource.

For a complete and more formalized description of a full resource request, look at the TypeScript interface resourceFullResponse in the module resourceResponseFormats.

Provide Request Parameters

	To make a request more specific, the following parameters can be appended to the URL (http://www.knora.org/resources/resourceIRI?param1=value1¶m2=value2):

	
	
	reqtype=info|context|rights: Specifies the type of request.

	
	Setting the parameter’s to value info returns short information about the requested resource (contains only resinfo and no properties, see TypeScript interface resourceInfoResponse in module resourceResponseFormats).

	Settings the parameter’s value to context returns context information (resource_context) about the requested resource: Either the dependent parts of a compound resource (e.g. pages of a book) or the parent resource of a dependent resource (e.g. the book a pages belongs to). By default, a context query does not return information about the requested resource itself, but only about its context (see TypeScript interface resourceContextResponse in module resourceResponseFormats). See below how to get additional information about the resource.

	The parameter rights returns only the given user’s permissions on the requested resource (see TypeScript interface resourceRightsResponse in module resourceResponseFormats).

	resinfo=true: Can be used in combination with reqtype=context: If set, resinfo is added to the response representing information about
the requested resource (complementary to its context), see TypeScript interface resourceContextResponse in module resourceResponseFormats.

Obtain an HTML Representation of a Resource

In order to get an HTML representation of a resource (not a JSON), the path segment resources.html can be used:

HTTP GET to http://host/v1/resources.html/resourceIRI?reqtype=properties

The request returns the properties of the requested resource as an HTML document.

Get only the Properties belonging to a Resource

In order to get only the properties of a resource without any other information, the path segment properties can be used:

HTTP GET to http://host/v1/properties/resourceIRI

The JSON contains just the member properties representing the requested resource’s properties (see TypeScript interface resourcePropertiesResponse in module resourceResponseFormats).

Get Information about a Resource Class

Get a Resource Class by its IRI

In order to get information about a resource class, the path segment resourcetypes can be used. Append the IRI of the resource class to the URL (e.g. http://www.knora.org/ontology/incunabula#book).

HTTP GET to http://host/v1/resourcetypes/resourceClassIRI

In the JSON, the information about the resource class and all the property types that it may have are returned.
Please note that none of these are actual instances of a property, but only types (see TypeScript interface resourceTypeResponse in module resourceResponseFormats).

Get all the Property Types of a Resource Class or a Vocabulary

To get a list of all the available property types, the path segment propertylists can be used. It can be restricted to a certain vocbulary using the parameter vocabulary
or to a certain resource class using the parameter restype.

returns all the property types for incunabula:page
HTTP GET to http://host/v1/propertylists?restype=resourceClassIRI

returns all the property types for the incunabula vocabulary
HTTP GET to http://host/v1/propertylists?vocabulary=vocabularyIRI

Both of these queries return a list of property types. The default value for the parameter vocabulary is 0
and means that the resource classes from all the available vocabularies are returned. See TypeScript interface propertyTypesInResourceClassResponse in module resourceResponseFormats.

Get the Resource Classes of a Vocabulary

Resource classes and property types are organized in (project specific) name spaces, so called vocabularies.
In order to get all the resource classes defined for a specific vocabulary (e.g. incunabula), the parameter vocabulary has to be used and assigned the vocabulary’s IRI:

HTTP GET to http://host/v1/resourcetypes?vocabulary=vocabularyIRI

This returns all the resource classes defined for the specified vocabulary and their property types. The default value for the parameter vocabulary is 0
and means that the resource classes from all the available vocabularies are returned. See TypeScript interface resourceTypesInVocabularyResponse in module resourceResponseFormats.

Get all the Vocabularies

To get a list of all available vocabularies, the path segment vocabularies can be used:

HTTP GET to http://host/v1/vocabularies

The response will list all the available vocabularies. See TypeScript interface vocabularyResponse in module resourceResponseFormats.

Search for Resources

Search for Resources by their Label

This is a simplified way for searching for resources just by their label. It is a simple string-based method:

HTTP GET to http://host/v1/resources?searchstr=searchValue

	Additionally, the following parameters can be appended to the URL (search value is Zeitglöcklein):

	
	restype_id=resourceClassIRI: This restricts the search to resources of the specified class (subclasses of that class will also match). -1 is the default value and means no restriction to a specific class. If a resource class IRI is specified, it has to be URL encoded (e.g. http://www.knora.org/v1/resources?searchstr=Zeitgl%C3%B6cklein&restype_id=http%3A%2F%2Fwww.knora.org%2Fontology%2Fincunabula%23book).

	numprops=Integer: Specifies the number of properties returned for each resource that was found (sorted by GUI order), e.g. http://www.knora.org/v1/resources?searchstr=Zeitgl%C3%B6cklein&numprops=4.

	limit=Integer: Limits the amount of results returned (e.g. http://www.knora.org/v1/resources?searchstr=Zeitgl%C3%B6cklein&limit=1).

The response lists the resources that matched the search criteria (see TypeScript interface resourceLabelSearchResponse in module resourceResponseFormats).

Fulltext Search

Knora offers a fulltext search that searches through all textual representations of values. You can separate search terms by a white space and they will be combined using the Boolean AND operator.
Please note that the search terms have to be URL encoded.

HTTP GET to http://host/v1/search/searchValue?searchtype=fulltext[&filter_by_restype=resourceClassIRI]
[&filter_by_project=projectIRI][&show_nrows=Integer]{[&start_at=Integer]

	The parameter searchtype is required and has to be set to fulltext. Additionally, these parameters can be set:

	
	filter_by_restype=resourceClassIRI: restricts the search to resources of the specified resource class (subclasses of that class will also match).

	filter_by_project=projectIRI: restricts the search to resources of the specified project.

	show_nrows=Integer: Indicates how many reults should be presented on one page. If omitted, the default value 25 is used.

	start_at=Integer: Used to enable paging and go through all the results request by request.

The response presents the retrieved resources (according to show_nrows and start_at) and information about paging.
If not all resources could be presented on one page (nhits is greater than shown_nrows), the next page can be requested (by increasing start_at by the number of show_nrows).
You can simply go through the elements of paging to request the single pages one by one.
See TypeScript interface searchResponse in module searchResponseFormats.

Extended Search for Resources

HTTP GET to http://host/v1/search/?searchtype=extended
[&filter_by_restype=resourceClassIRI][&filter_by_project=projectIRI][&filter_by_owner=userIRI]
(&property_id=propertyTypeIRI&compop=comparisonOperator&searchval=searchValue)+
[&show_nrows=Integer][&start_at=Integer]

	The parameter searchtype is required and has to be set to extended. An extended search requires at least one set of parameters consisting of:

	
	property_id=propertyTypeIRI: the property the resource has to have (subproperties of that property will also match).

	compop=comparisonOperator: the comparison operator to be used to match between the resource’s property value and the search term.

	searchval=searchTerm: the search value to look for.

You can also provide several of these sets to make your query more specific.

The following table indicates the possible combinations of value types and comparison operators:

	Value Type
	Comparison Operator

	Date Value
	EQ, !EQ, GT, GT_EQ, LT, LT_EQ, EXISTS

	Integer Value
	EQ, !EQ, GT, GT_EQ, LT, LT_EQ, EXISTS

	Float Value
	EQ, !EQ, GT, GT_EQ, LT, LT_EQ, EXISTS

	Text Value
	MATCH_BOOLEAN, MATCH, EQ, !EQ, LIKE, !LIKE, EXISTS

	Geometry Value
	EXISTS

	Resource Pointer
	EQ, EXISTS

	Color Value
	EQ, EXISTS

	List Value
	EQ, EXISTS

	Explanation of the comparison operators:

	
	EQ: checks if a resource’s value equals the search value. In case of a text value type, it checks for identity of the strings compared. In case of a date value type, it checks if the dates are equal or if the specified date encompasses it (internally, dates are always treated as periods).

	!EQ: checks if a resource’s value does not equal the search value. In case of a text value type, it checks if the compared strings are different. In case of a date value type, it checks if the dates are not equal or if the specified date does not encompass it (internally, dates are always treated as periods).

	GT: checks if a resource’s value is greater than the search value. In case of a date value type, it checks if the resource’s period begins after the indicated date.

	GT_EQ: checks if a resource’s value equals or is greater than the search value. In case of a date value type, it checks if the resource’s period equals the end of the indicated period or begins after the indicated period.

	LT: checks if a resource’s value is lower than the search value. In case of a date value type, it checks if the resource’s period begins before the indicated date.

	LT_EQ: checks if a resource’s value equals or is lower than the search value. In case of a date value type, it checks if the resource’s period equals the begin of the indicated period or begins before the indicated period.

	EXISTS: checks if an instance of the indicated property type exists for a resource. Please always provide an empty search value when using EXISTS: “searchval=”. Otherwise, the query syntax rules would be violated.

	MATCH: checks if a resource’s text value matches the search value. The behaviour depends on the used triplestore’s full text index.

	LIKE: checks if the search value is contained in a resource’s text value.

	!LIKE: checks if the search value is not contained in a resource’s text value.

	MATCH_BOOLEAN: checks if a resource’s text value matches the provided list of positive (exist) and negative (do not exist) terms. The list takes this form: ([+-]term\s)+.

	Additionally, these parameters can be set:

	
	filter_by_restype=resourceClassIRI: restricts the search to resources of the specified resource class (subclasses of that class will also match).

	filter_by_project=projectIRI: restricts the search to resources of the specified project.

	filter_by_owner: restricts the search to resources owned by the specified user.

	show_nrows=Integer: Indicates how many reults should be presented on one page. If omitted, the default value 25 is used.

	start_at=Integer: Used to enable paging and go through all the results request by request.

	Some sample searches:

	
	http://localhost:3333/v1/search/?searchtype=extended&filter_by_restype=http%3A%2F%2Fwww.knora.org%2Fontology%2Fincunabula%23book&property_id=http%3A%2F%2Fwww.knora.org%2Fontology%2Fincunabula%23title&compop=!EQ&searchval=Zeitgl%C3%B6cklein%20des%20Lebens%20und%20Leidens%20Christi: searches for books that have a title that does not equal “Zeitglöcklein des Lebens und Leidens Christi”.

	http://www.knora.org/v1/search/?searchtype=extended&filter_by_restype=http%3A%2F%2Fwww.knora.org%2Fontology%2Fincunabula%23book&property_id=http%3A%2F%2Fwww.knora.org%2Fontology%2Fincunabula%23title&compop=MATCH&searchval=Zeitgl%C3%B6cklein&property_id=http%3A%2F%2Fwww.knora.org%2Fontology%2Fincunabula%23pubdate&compop=EQ&searchval=JULIAN:1490: searches for resources of type incunabula:book whose titles match “Zeitglöcklein” and were published in the year 1490 (according to the Julian calendar).

The response presents the retrieved resources (according to show_nrows and start_at) and information about paging.
If not all resources could be presented on one page (nhits is greater than shown_nrows), the next page can be requested (by increasing start_at by the number of show_nrows).
You can simply go through the elements of paging to request the single pages one by one.
See the TypeScript interface searchResponse in module searchResponseFormats.

Get a Graph of Resources

The path segment graphdata returns a graph of resources that are reachable via links to or from an initial resource.

HTTP GET to http://host/v1/search/graphdata/resourceIRI?depth=Integer

The parameter depth specifies the maximum depth of the graph, and defaults to 4. If depth is 1, the operation will return only the initial resource and any resources that are directly linked to or from it.

The graph includes any link that is a subproperty of knora-base:hasLinkTo, except for links that are subproperties of knora-base:isPartOf. Specifically, if resource R1 has a link that is a subproperty of knora-base:isPartOf pointing to resource R2, no link from R1 to R2 is included in the graph.

The response represents the graph as a list of nodes (resources) and a list of edges (links). For details, see the TypeScript interface graphDataResponse in module graphDataResponseFormats.

Get Hierarchical Lists

The knora-base ontology allows for the definition of hierarchical lists. These can be queried by providing the IRI of the root node.
Selections are hierarchical list that are just one level deep. Internally, they are represented as hierarchical lists.

You can get a hierarchical by using the path segment hlists and appending the hierarchical list’s IRI (URL encoded):

HTTP GET to http://host/v1/hlists/rootNodeIRI

The response shows all of the list nodes that are element of the requested hierarchical list as a tree structure. See TypeScript interface hierarchicalListResponse in module hierarchicalListResponseFormats.

For each node, the full path leading to it from the top level can be requested by making a query providing the node’s IRI and setting the param reqtype=node:

HTTP GET to http://host/v1/hlists/nodeIri?reqtype=node

The response presents the full path to the current node. See TypeScript interface nodePathResponse in module hierarchicalListResponseFormats.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 XML to Standoff Mapping

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Using API V1

XML to Standoff Mapping

	The Knora Standard Mapping

	Creating a custom Mapping
	Basic Structure of a Mapping

	id and class Attributes

	Respecting Cardinalities

	Standoff Data Types
	Internal References in an XML Document

	Predefined Standoff Classes and Properties

	Respecting Property Types

	Validating a Mapping and sending it to Knora

The Knora Standard Mapping

A mapping allows for the conversion of XML to standoff representation in RDF and back. In order to create a TextValue with markup, the text has to be provided in XML format, along with the IRI of the mapping that will be used to convert the markup to standoff.
However, a mapping is only needed if a TextValue with markup should be created. If a text has no markup, it is submitted as a mere sequence of characters.

The two cases are described in the TypeScript interfaces simpletext and richtext in module basicMessageComponents.

Knora offers a standard mapping with the IRI http://data.knora.org/projects/standoff/mappings/StandardMapping. The standard mapping covers the HTML elements and attributes supported by the GUI’s text editor CKEditor [1]
(please note that the HTML has to be encoded in strict XML syntax). The standard mapping contains the following elements and attributes that are mapped to standoff classes and properties defined in the ontology:

	<text> -> standoff:StandoffRootTag

	<p> -> standoff:StandoffParagraphTag

	 -> standoff:StandoffItalicTag

	 -> standoff:StandoffBoldTag

	<u> -> standoff:StandoffUnderlineTag

	<sub> -> standoff:StandoffSubscriptTag

	<sup> -> standoff:StandoffSuperscriptTag

	<strike> -> standoff:StandoffStrikeTag

	 -> knora-base:StandoffUriTag

	 -> knora-base:StandoffLinkTag

	
 -> standoff:StandoffBrTag

The HTML produced by CKEditor is wrapped in an XML doctype and a pair of root tags <text>...</text> and then sent to Knora. The XML sent to the GUI by Knora is unwrapped accordingly (see jquery.htmleditor.js).
Although the GUI supports HTML5, it is treated as if it was XHTML in strict XML notation.

Creating a custom Mapping

The Knora standard mapping only supports a few HTML tags. In order to submit more complex XML markup to Knora, a custom mapping has to be created first.
Basically, a mapping expresses the relations between XML elements and attributes and their corresponding standoff classes and properties.
The relations expressed in a mapping are one-to-one relations, so the XML can be recreated from the data in RDF. However, since HTML offers a very limited set of elements, Knora mappings support the combination of element names
and classes. In this way, the same element can be used several times in combination with another classname (please note that <a> without a class is a mere hyperlink whereas is an internal link/standoff link).

Basic Structure of a Mapping

The mapping is written in XML itself (for a formal description, see webapi/src/resources/mappingXMLToStandoff.xsd). It has the following structure (the indentation corresponds to the nesting in XML):

	
	<mapping>: the root element

	
	
	<mappingElement>: an element of the mapping (at least one)

	
	
	<tag>: information about the XML element that is mapped to a standoff class

	
	<name>: name of the XML element

	<class>: value of the class attribute of the XML element, if any. If the element has no class attribute, the keyword noClass has to be used.

	<namespace>: the namespace the XML element belongs to, if any. If the element does not belong to a namespace, the keyword noNamespace has to be used.

	<separatesWords>: a Boolean value indicating whether this tag separates words in the text. Once an XML document is converted to RDF-standoff the markup is stripped from the text, possibly leading to continuous text that has been separated by tags before. For structural tags like paragraphs etc., <separatesWords> can be set to true in which case a special separator is inserted in the the text in the RDF representation. In this way, words stay separated and are represented in the fulltext index as such.

	
	<standoffClass>: information about the standoff class the XML element is mapped to

	
	<classIri>: Iri of the standoff class the XML element is mapped to

	
	<attributes>: XML attributes to be mapped to standoff properties (other than id or class), if any

	
	
	<attribute>: an XML attribute to be mapped to a standoff property, may be repeated

	
	<attributeName>: the name of the XML attribute

	<namespace>: the namespace the attribute belogs to, if any. If the attribute does not belong to a namespace, the keyword noNamespace has to be used.

	<propertyIri>: the Iri of the standoff property the XML attribute is mapped to.

	
	<datatype>: the data type of the standoff class, if any.

	
	<type>: the Iri of the data type standoff class

	<attributeName>: the name of the attribute holding the typed value in the expected Knora standard format

XML structure of a mapping:

<mapping>
 <mappingElement>
 <tag>
 <name>XML element name</name>
 <class>XML class name or "noClass"</class>
 <namespace>XML namespace or "noNamespace"</namespace>
 <separatesWords>true or false</separatesWords>
 </tag>
 <standoffClass>
 <classIri>standoff class Iri</classIri>
 <attributes>
 <attribute>
 <attributeName>XML attribute name</attributeName>
 <namespace>XML namespace or "noNamespace"</namespace>
 <propertyIri>standoff property Iri</propertyIri>
 </attribute>
 <datatype>
 <type>standoff data type class</type>
 <attributeName>XML attribute with the typed value</attributeName>
 </datatype>
 </standoffClass>
 </mappingElement>
 <mappingElement>
 ...
 </mappingElement>
</mapping>

Please note that the absence of an XML namespace and/or a class have to be explicitly stated using the keywords noNamespace and noClass [2].

id and class Attributes

The id and class attributes are supported by default and do not have to be included in the mapping like other attributes.
The id attribute identifies an element and must be unique in the document. id is an optional attribute.
The class attribute allows for the reuse of an element in the mapping, i.e. the same element can be combined with different class names and mapped to different standoff classes (mapping element <class> in <tag>).

Respecting Cardinalities

A mapping from XML elements and attributes to standoff classes and standoff properties must respect the cardinalities defined in the ontology for those very standoff classes.
If an XML element is mapped to a certain standoff class and this class requires a standoff property, an attribute must be defined for the XML element mapping to that very standoff property.
Equally, all mappings for attributes of an XML element must have corresponding cardinalities for standoff properties defined for the standoff class the XML element maps to.

However, since an XML attribute may occur once at maximum, it makes sense to make the corresponding standoff property required (owl:cardinality of one) in the ontology or optional (owl:maxCardinality of one),
but not allowing it more than once.

Standoff Data Types

Knora allows the use of all its value types as standoff data types (defined in knora-base.ttl):

	knora-base::StandoffLinkTag: Represents a reference to a Knora resource (the IRI of the target resource must be submitted in the data type attribute).

	knora-base:StandoffInternalReferenceTag: Represents an internal reference inside a document (the id of the target element inside the same document must be indicated in the data type attribute), see Internal References in an XML Document.

	knora-base::StandoffUriTag: Represents a reference to a URI (the URI of the target resource must be submitted in the data type attribute).

	knora-base::StandoffDateTag: Represents a date (a Knora date string must be submitted in the data type attribute, e.g. GREGORIAN:2017-01-27).

	knora-base::StandoffColorTag: Represents a color (a hexadecimal RGB color string must be submitted in the data type attribute, e.g. #0000FF).

	knora-base::StandoffIntegerTag: Represents an integer (the integer must be submitted in the data type attribute).

	knora-base::StandoffDecimalTag: Represents a number with fractions (the decimal number must be submitted in the data type attribute, e.g. 1.1).

	knora-base::StandoffIntervalTag: Represents an interval (two decimal numbers separated with a comma must be submitted in the data type attribute, e.g. 1.1,2.2).

	knora-base::StandoffBooleanTag: Represents a Boolean value (true or false must be submitted in the data type attribute).

The basic idea is that parts of a text can be marked up in a way that allows using Knora’s built-in data types. In order to do so, the typed values have to be provided in a standardized way in an attribute that has to be defined in the mapping.

Data type standoff classes are standoff classes with predefined properties (e.g., a knora-base:StandoffLinkTag has a knora-base:standoffTagHasLink and a knora-base:StandoffIntegerTag has a knora-base:valueHasInteger).
Please note the data type standoff classes can not be combined, i.e. a standoff class can only be the subclass of one data type standoff class.
However, standoff data type classes can be subclassed and extended further by assigning properties to them (see below).

The following simple mapping illustrates this principle:

<?xml version="1.0" encoding="UTF-8"?>
<mapping>
 <mappingElement>
 <tag>
 <name>text</name>
 <class>noClass</class>
 <namespace>noNamespace</namespace>
 <separatesWords>false</separatesWords>
 </tag>
 <standoffClass>
 <classIri>http://www.knora.org/ontology/standoff#StandoffRootTag</classIri>
 </standoffClass>
 </mappingElement>

 <mappingElement>
 <tag>
 <name>mydate</name>
 <class>noClass</class>
 <namespace>noNamespace</namespace>
 <separatesWords>false</separatesWords>
 </tag>
 <standoffClass>
 <classIri>http://www.knora.org/ontology/anything#StandoffEventTag</classIri>
 <attributes>
 <attribute>
 <attributeName>description</attributeName>
 <namespace>noNamespace</namespace>
 <propertyIri>http://www.knora.org/ontology/anything#standoffEventTagHasDescription</propertyIri>
 </attribute>
 </attributes>
 <datatype>
 <type>http://www.knora.org/ontology/knora-base#StandoffDateTag</type>
 <attributeName>knoraDate</attributeName>
 </datatype>
 </standoffClass>
 </mappingElement>
<mapping>

<datatype> must hold the Iri of a standoff data type class (see list above). The <classIri> must be a subclass of this type or this type itself (the latter is probably not recommendable since semantics are missing: what is the meaning of the date?).
In the example above, the standoff class is anything:StandoffEventTag which has the following definition in the ontology anything-onto.ttl:

anything:StandoffEventTag rdf:type owl:Class ;

 rdfs:subClassOf knora-base:StandoffDateTag,
 [
 rdf:type owl:Restriction ;
 owl:onProperty :standoffEventTagHasDescription ;
 owl:cardinality "1"^^xsd:nonNegativeInteger
] ;

 rdfs:label "Represents an event in a TextValue"@en ;

 rdfs:comment """Represents an event in a TextValue"""@en .

anything:StandoffEventTag is a subclass of knora-base:StandoffDateTag and therefore has the data type date.
It also requires the standoff property anything:standoffEventTagHasDescription which is defined as an attribute in the mapping.

Once the mapping has been created, an XML like the following could be sent to Knora and converted to standoff:

<?xml version="1.0" encoding="UTF-8"?>
<text>
 We had a party on <mydate description="new year" knoraDate="GREGORIAN:2016-12-31">New Year's Eve</mydate>. It was a lot of fun.
</text>

The attribute holds the date in the format of a Knora date string (the format is also documented in the typescript type alias dateString in module basicMessageComponents. There you will also find documentation about the other types like color etc.).
Knora date strings have this format: GREGORIAN|JULIAN):YYYY[-MM[-DD]][:YYYY[-MM[-DD]]]. This allows for different formats as well as for imprecision and periods.
Intervals are submitted as one attribute in the following format: interval-attribute="1.0,2.0" (two decimal numbers separated with a comma).

You will find a sample mapping with all the data types and a sample XML file in the the test data: webapi/_test_data/test_route/texts/mappingForHTML.xml and webapi/_test_data/test_route/texts/HTML.xml.

Internal References in an XML Document

Internal references inside an XML document can be represented using the data type standoff class knora-base:StandoffInternalReferenceTag or a subclass of it.
This class has a standoff property that points to a standoff node representing the target XML element when converted to RDF.

The following example shows the definition of a mapping element for an internal reference (for reasons of simplicity, only the mapping element for the element is question is depicted):

<mappingElement>
 <tag>
 <name>ref</name>
 <class>noClass</class>
 <namespace>noNamespace</namespace>
 <separatesWords>false</separatesWords>
 </tag>
 <standoffClass>
 <classIri>http://www.knora.org/ontology/knora-base#StandoffInternalReferenceTag</classIri>
 <datatype>
 <type>http://www.knora.org/ontology/knora-base#StandoffInternalReferenceTag</type>
 <attributeName>internalRef</attributeName>
 </datatype>
 </standoffClass>
</mappingElement>

Now, an internal reference to an element in the same document can be made that will be converted to a pointer in RDF:

<?xml version="1.0" encoding="UTF-8"?>
<text>
 This is an <sample id="1">element</sample> and here is a reference to <ref internalRef="#1">it</ref>.
</text>

An internal reference in XML has to start with a # followed by the value of the id attribute of the element referred to.

Predefined Standoff Classes and Properties

The standoff ontology standoff-onto.ttl offers a set of predefined standoff classes that can be used in a custom mapping like the following:

<?xml version="1.0" encoding="UTF-8"?>
<mapping>
 <mappingElement>
 <tag>
 <name>myDoc</name>
 <class>noClass</class>
 <namespace>noNamespace</namespace>
 <separatesWords>false</separatesWords>
 </tag>
 <standoffClass>
 <classIri>http://www.knora.org/ontology/standoff#StandoffRootTag</classIri>
 <attributes>
 <attribute>
 <attributeName>documentType</attributeName>
 <namespace>noNamespace</namespace>
 <propertyIri>http://www.knora.org/ontology/standoff#standoffRootTagHasDocumentType</propertyIri>
 </attribute>
 </attributes>
 </standoffClass>
 </mappingElement>

 <mappingElement>
 <tag>
 <name>p</name>
 <class>noClass</class>
 <namespace>noNamespace</namespace>
 <separatesWords>true</separatesWords>
 </tag>
 <standoffClass>
 <classIri>http://www.knora.org/ontology/standoff#StandoffParagraphTag</classIri>
 </standoffClass>
 </mappingElement>

 <mappingElement>
 <tag>
 <name>i</name>
 <class>noClass</class>
 <namespace>noNamespace</namespace>
 <separatesWords>false</separatesWords>
 </tag>
 <standoffClass>
 <classIri>http://www.knora.org/ontology/standoff#StandoffItalicTag</classIri>
 </standoffClass>
 </mappingElement>
<mapping>

Predefined standoff classes may be used by various projects, each providing a custom mapping to be able to recreate the original XML from RDF.
Predefined standoff classes may also be inherited and extended in project specific ontologies.

The mapping above allows for an XML like this:

<?xml version="1.0" encoding="UTF-8"?>
<myDoc documentType="letter">
 <p>
 This my text that is <i>very</i> interesting.
 </p>
 <p>
 And here it goes on.
 </p>
</myDoc>

Respecting Property Types

When mapping XML attributes to standoff properties, attention has to be paid to the properties’ object constraints.

In the ontology, standoff property literals may have one of the following knora-base:objectDatatypeConstraint:

	xsd:string

	xsd:integer

	xsd:boolean

	xsd:decimal

	xsd:anyURI

In XML, all attribute values are submitted as strings. However, these string representations need to be convertible to the types defined in the ontology.
If they are not, the request will be rejected. It is recommended to enforce types on attributes by applying XML Schema validations (restrictions).

Links (object property) to a knora-base:Resource can be represented using the data type standoff class knora-base::StandoffLinkTag, internal links using the data type standoff class knora-base:StandoffInternalReferenceTag.

Validating a Mapping and sending it to Knora

A mapping can be validated before sending it to Knora with the following XML Schema file: webapi/src/resources/mappingXMLToStandoff.xsd.
Any mapping that does not conform to this XML Schema file will be rejected by Knora.

The mapping has to be sent as a multipart request to the standoff route using the path segment mapping:

HTTP POST http://host/v1/mapping

The multipart request consists of two named parts:

	“json” ->:

{
 "project_id": "projectIRI",
 "label": "my mapping",
 "mappingName": "MappingNameSegment"
}

	“xml” ->:

<?xml version="1.0" encoding="UTF-8"?>
<mapping>
 ...
</mapping>

A successful response returns the Iri of the mapping. However, the Iri of a mapping is predictable: it consists of the project Iri followed by /mappings/ and the mappingName submitted in the JSON
(if the name already exists, the request will be rejected).
Once created, a mapping can be used to create TextValues in Knora. The formats are documented in the typescript interfaces addMappingRequest and addMappingResponse in module mappingFormats

	[1]	CKeditor offers the possibility to define filter rules (CKEditor [http://docs.ckeditor.com/#!/guide/dev_acf-section-automatic-mode-but-disallow-certain-tags%2Fproperties]). They should reflect the elements supported by the mapping (see jquery.htmleditor.js).

	[2]	This is because we use XML Schema validation to ensure the one-to-one relations between XML elements and standoff classes. XML Schema validations unique checks do not support optional values.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Adding Resources

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Using API V1

Adding Resources

	Adding Resources without a digital Representation

	Adding Resources with a digital Representation
	Including the binaries (Non GUI-case)

	Indicating the location of a file (GUI-case)

	Response to a Resource Creation

	Changing a resource’s label

	Adding Multiple Resources in a Single Request
	XML File Format

In order to create a resource, the HTTP method POST has to be used.
The request has to be sent to the Knora server using the resources path segment:

HTTP POST to http://host/v1/resources

Unlike in the case of GET requests, the request body consists of JSON describing the resource to be created.

Creating resources requires authentication since only known users may add resources.

Adding Resources without a digital Representation

The format of the JSON used to create a resource without a digital representation is described
in the TypeScript interface createResourceWithoutRepresentationRequest in module createResourceFormats.
It requires the IRI of the resource class the new resource belongs to, a label describing the new resource,
the IRI of the project the new resource belongs to, and the properties to be assigned to the new resource.

The request header’s content type has to be set to application/json.

Adding Resources with a digital Representation

Certain resource classes allow for digital representations (e.g. an image). There are two ways to attach a file to a resource:
Either by submitting directly the binaries of the file in a HTTP Multipart request or by indicating the location of the file.
The two cases are referred to as Non GUI-case and GUI-case (see Interaction Between Sipi and Knora).

Including the binaries (Non GUI-case)

In order to include the binaries, a HTTP Multipart request has to be sent. One part contains the JSON (same format as described for Adding Resources without a digital Representation) and has to be named json.
The other part contains the file’s name, its binaries, and its mime type and has to be named file. The following example illustrates how to make this type of request using Python3:

#!/usr/bin/env python3

import requests, json

a Python dictionary that will be turned into a JSON object
resourceParams = {
 'restype_id': 'http://www.knora.org/ontology/test#testType',
 'properties': {
 'http://www.knora.org/ontology/test#testtext': [
 {'richtext_value': {'utf8str': "test", 'textattr': json.dumps({}), 'resource_reference': []}}
],
 'http://www.knora.org/ontology/test#testnumber': [
 {'int_value': 1}
]
 },
 'label': "test resource",
 'project_id': 'http://data.knora.org/projects/testproject'
}

the name of the file to be submitted
filename = "myimage.jpg"

a tuple containing the file's name, its binaries and its mimetype
file = {'file': (filename, open(filename, 'rb'), "image/jpeg")} # use name "file"

do a POST request providing both the JSON and the binaries
r = requests.post("http://host/v1/resources",
 data={'json': json.dumps(resourceParams)}, # use name "json"
 files=file,
 auth=('user', 'password'))

Please note that the file has to be read in binary mode (by default it would be read in text mode).

Indicating the location of a file (GUI-case)

This request works similarly to Adding Resources without a digital Representation. The JSON format is described in
the TypeScript interface createResourceWithRepresentationRequest in module createResourceFormats.
The request header’s content type has to set to application/json.

In addition to Adding Resources without a digital Representation, the (temporary) name of the file, its original name, and mime type have to be provided (see GUI-Case).

Response to a Resource Creation

When a resource has been successfully created, Knora sends back a JSON containing the new resource’s IRI (res_id) and its properties.
The resource IRI identifies the resource and can be used to perform future Knora API V1 operations.

The JSON format of the response is described in the TypeScript interface createResourceResponse in module createResourceFormats.

Changing a resource’s label

A resource’s label can be changed by making a PUT request to the path segments resources/label.
The resource’s Iri has to be provided in the URL (as its last segment). The new label has to submitted as JSON in the HTTP request’s body.

HTTP PUT to http://host/v1/resources/label/resourceIRI

The JSON format of the request is described in the TypeScript interface changeResourceLabelRequest in module createResourceFormats.
The response is described in the TypeScript interface changeResourceLabelResponse in module createResourceFormats.

Adding Multiple Resources in a Single Request

Multiple resources can be created in a single request. This is especially
useful if the resources have links to one another. The entire request will be
checked for consistency as a whole.

The resources to be created must be described in an XML file. The XML file
containing the resource descriptions can be imported directly to Knora by a
POST request. The request has to be sent to the Knora server using the
resources/xml path segment.

HTTP POST to http://host/v1/resources/xml

XML File Format

The ontologies containing the resource classes must be given as XML
namespaces. For example, if resource classes from the beol and
biblio ontologies are used in the XML file, these ontologies can be
specified as follows:

<xml xmlns:beol="http://www.knora.org/ontology/beol"
 xmlns:biblio="http://www.knora.org/ontology/biblio">

Each XML element representing a resource or property must have the name of a
resource class or property defined in one of the specified ontologies. The
cardinalities defined in the ontologies must also be respected. For example,
if the resource class person in the beol ontology has the properties
hasGivenName and hasFamilyName, a person resource could be created
as follows:

<beol:person id="abel">
 <beol:hasGivenName>Niels Henrik</beol:hasGivenName>
 <beol:hasFamilyName>Abel</beol:hasFamilyName>
</beol:person>

Every resource must have an id attribute containing a unique identifier,
which will be stored as its rdfs:label.

The property values of resources should be in the format specified for that
property in the ontology. For example, if a property is defined in the ontology
as having a value of type knora-base:DateValue, a Knora date string must be
submitted as its value in the XML, e.g.:

<biblio:publicationHasDate>GREGORIAN:1974</biblio:publicationHasDate>

An element representing a link to another resource must have a child element
specifying the type of the target resource, and a ref attribute referring
to the id attribute of the XML element representing the target resource.
For example:

<biblio:publicationHasAuthor>
 <beol:person ref="abel"/>
</biblio:publicationHasAuthor>

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Reading Values

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Using API V1

Reading Values

In order to get an existing value, the HTTP method GET has to be used.
The request has to be sent to the Knora server using the values path segment.
Reading values may require authentication since some resources may have restricted viewing permissions.

Reading a Value

The representation of a value can be obtained by making a GET request providing the value’s IRI:

HTTP GET to http://host/v1/values/valueIRI

In the response, the value’s type and value are returned (see TypeScript interface valueResponse in module valueResponseFormats).

Getting a Value’s Version History

In order to get the history of a value (its current and previous versions), the IRI of the resource it belongs to, the IRI of the property type that connects the resource to the value,
and its current value IRI have to be submitted. Each of these elements is appended to the URL and separated by a slash. Please note that all of these have to be URL encoded.

Additionally to values, the path segment history has to be used:

HTTP GET to http://host/v1/values/history/resourceIRI/propertyTypeIRI/valueIRI

In the response, the value’s versions returned (see TypeScript interface valueVersionsResponse in module valueResponseFormats).

Getting a Linking Value

In order to get information about a link between two resources, the path segment links has to be used.
The IRI of the source object, the IRI of the property type linking the the two objects, and the IRI of the target object have to be provided in the URL separated by slashes.
Each of these has to be URL encoded.

HTTP GET to http://host/links/sourceObjectIRI/linkingPropertyIRI/targetObjectIRI

In the response, information about the link is returned such as a reference count indicating how many links of the specified direction
(source to target) and type (property) between the two objects exist (see TypeScript interface linkResponse in module valueResponseFormats).

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Adding a Value

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Using API V1

Adding a Value

In order to add values to an existing resource, the HTTP method POST has to be used.
The request has to be sent to the Knora server using the values path segment.
Creating values requires authentication since only known users may add values.

Adding a Property Value

In order to add a value to a resource, its property type, value, and project has to be indicated in the JSON.
Also the IRI of the resource the new value belongs has to be provided in the JSON.

HTTP POST to http://host/v1/values

	Depending on the type of the new value, one of the following formats (all TypeScript interfaces defined in module addValueFormats) has to be used in order to create a new value:

	
	addRichtextValueRequest

	addLinkValueRequest

	addIntegerValueRequest

	addDecimalValueRequest

	addBooleanValueRequest

	addUriValueRequest

	addDateValueRequest (see dateString in basicMessageComponents for the date format)

	addColorValueRequest

	addGeometryValueRequest

	addHierarchicalListValueRequest

	addintervalValueRequest

	addGeonameValueRequest

Response on Value Creation

When a value has been successfully created, Knora sends back a JSON with the new value’s IRI.
The value IRI identifies the value and can be used to perform future Knora API V1 operations.

The JSON format of the response is described in the TypeScript interface addValueResponse in module addValueFormats.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Changing a Value

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Using API V1

Changing a Value

	Modifying a Property Value

	Modifying a File Value
	Including the binaries (Non GUI-case)

	Indicating the location of a file (GUI-case)

	Response on Value Change

In order to add values to an existing resource, the HTTP method PUT has to be used.
Changing values requires authentication since only known users may change values.

Modifying a Property Value

The request has to be sent to the Knora server using the values path segment followed by the value’s IRI:

HTTP PUT to http://host/values/valueIRI

Please note that the value IRI has to be URL encoded.

In order to change an existing value (creating a new version of it), the value’s current IRI and its new value have to be submitted as JSON in the HTTP body.

	Depending on the type of the new value, one of the following formats (all TypeScript interfaces defined in module changeValueFormats) has to be used in order to create a new value:

	
	changeRichtextValueRequest

	changeLinkValueRequest

	changeIntegerValueRequest

	changeDecimalValueRequest

	changeBooleanValueRequest

	changeUriValueRequest

	changeDateValueRequest

	changeColorValueRequest

	changeGeometryValueRequest

	changeHierarchicalListValueRequest

	changeIntervalValueRequest

	changeGeonameValueRequest

Modifying a File Value

In order to exchange a file value (digital representation of a resource), the path segment filevalue has to be used.
The IRI of the resource whose file value is to be exchanged has to be appended:

HTTP PUT to http://host/filevalue/resourceIRI

Please note that the resource IRI has to be URL encoded.

There are two ways to change a file of a resource:
Either by submitting directly the binaries of the file in a HTTP Multipart request or by indicating the location of the file.
The two cases are referred to as Non GUI-case and GUI-case (see Interaction Between Sipi and Knora).

Including the binaries (Non GUI-case)

Here, a HTTP MULTIPART request has to be made simply providing the binaries (without JSON):

#!/usr/bin/env python3

import requests, json, urllib

the name of the file to be submitted
filename = 'myimage.tif'

a tuple containing the file's name, its binaries and its mimetype
files = {'file': (filename, open(filename, 'rb'), "image/tiff")}

resIri = urllib.parse.quote_plus('http://data.knora.org/xy')

r = requests.put("http://host/filevalue/" + resIri,
 files=files)

Please note that the file has to be read in binary mode (by default it would be read in text mode).

Indicating the location of a file (GUI-case)

Here, simply the location of the new file has to be submitted as JSON.
The JSON format is described in the TypeScript interface changeFileValueRequest in module changeValueFormats.
The request header’s content type has to set to application/json.

Response on Value Change

When a value has been successfully changed, Knora sends back a JSON with the new value’s IRI.
The value IRI identifies the value and can be used to perform future Knora API V1 operations.

The JSON format of the response is described in the TypeScript interface changeValueResponse in module changeValueFormats.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Deleting Resources and Values

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	The Knora API Server

 	Using API V1

Deleting Resources and Values

Knora does not actually delete resources or values; it just marks them as deleted. To mark a resource or value
as deleted, you must use the HTTP method DELETE has to be used. This requires authentication.

Mark a Resource as Deleted

The delete request has to be sent to the Knora server using the resources path segment.

HTTP DELETE to http://host/resources/resourceIRI?deleteComment=String

The resource IRI must be URL-encoded. The deleteComment is an optional comment explaining why the resource
is being marked as deleted.

Mark a Value as Deleted

The delete request has to be sent to the Knora server using the values path segment, providing the valueIRI:

HTTP DELETE to http://host/values/valueIRI?deleteComment=String

The value IRI must be URL-encoded. The deleteComment is an optional comment explaining why the value is
being marked as deleted.

Once a value has been marked as deleted, no new versions of it can be made.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 SALSAH

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

SALSAH

SALSAH - System for Annotation and Linkage of Sources in Arts and Humanities

	Developing SALSAH
	Build Process

	SALSAH Design Documentation
	SALSAH Design Overview

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Developing SALSAH

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	SALSAH

Developing SALSAH

	Build Process
	Building and Running

	Run the automated tests

	SBT Build Configuration

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Build Process

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	SALSAH

 	Developing SALSAH

Build Process

	TODO: complete this file.

	
	SBT

Building and Running

Start the provided Fuseki triplestore:

$ cd KNORA_PROJECT_DIRECTORY/triplestores/fuseki
$./fuseki-server

Then in another terminal, load some test data into the triplestore:

$ cd KNORA_PROJECT_DIRECTORY/webapi/scripts
$./fuseki-load-test-data.sh

Then go back to the webapi root directory and use SBT to start the API server:

$ cd KNORA_PROJECT_DIRECTORY/webapi
$ sbt
> compile
> re-start allowResetTriplestoreContentOperationOverHTTP

Then in another terminal, go to the SIPI project root directory and start the server:

$./local/bin/sipi --config=config/sipi.knora-config.lua (for production)
$./local/bin/sipi --config=config/sipi.knora-test-config.lua (for running tests)

Then in another terminal, go to the SALSAH root directory and start the server:

$ cd KNORA_PROJECT_DIRECTORY/salsah
$ sbt
> compile
> re-start

To shut down the SALSAH server:

> re-stop

Run the automated tests

In order to run the tests, the Selenium driver for Chrome has to be installed.

It is architecture-dependant, please go to salsah/lib/chromedriver directory and unzip the distribution that matches your architecture, or download it from here [https://sites.google.com/a/chromium.org/chromedriver/downloads] and install it in this directory.

Then, launch the services as described above; the triple store with the test data, the api server with the allowResetTriplestoreContentOperationOverHTTP option, sipi with the test configuration and salsah where you can run the tests in the same SBT session:

$ cd KNORA_PROJECT_DIRECTORY/salsah
$ sbt
> compile
> re-start
> test

Note: please be patient as salsah can take up to one mimute (end of a time-out) before reporting some errors.

SBT Build Configuration

import sbt._
import sbt.Keys.{licenses, mainClass, mappings, _}
import spray.revolver.RevolverPlugin._
import com.typesafe.sbt.SbtNativePackager.autoImport._
import com.typesafe.sbt.packager.MappingsHelper.{contentOf, directory}

lazy val salsah = (project in file(".")).
 settings(salsahCommonSettings: _*).
 settings(
 libraryDependencies ++= salsahLibs,
 logLevel := Level.Info,
 fork in run := true,
 javaOptions in run ++= javaRunOptions,
 mainClass in (Compile, run) := Some("org.knora.salsah.Main"),
 fork in Test := true,
 javaOptions in Test ++= javaTestOptions,
 parallelExecution in Test := false,
 /* show full stack traces and test case durations */
 testOptions in Test += Tests.Argument("-oDF")
).
 settings(// enable deployment staging with `sbt stage`
 mappings in Universal ++= {
 // copy the public folder
 directory("src/public") ++
 // copy configuration files to config directory
 contentOf("src/main/resources").toMap.mapValues("config/" + _)
 },
 // add 'config' directory first in the classpath of the start script,
 scriptClasspath := Seq("../config/") ++ scriptClasspath.value,
 // add license
 licenses := Seq(("GNU AGPL", url("https://www.gnu.org/licenses/agpl-3.0"))),
 // need this here, but why?
 mainClass in Compile := Some("org.knora.salsah.Main")).
 settings(Revolver.settings: _*).
 enablePlugins(JavaAppPackaging) // Enable the sbt-native-packager plugin

lazy val salsahCommonSettings = Seq(
 organization := "org.knora",
 name := "salsah",
 version := "0.1.0",
 scalaVersion := "2.11.7"
)

lazy val javaRunOptions = Seq(
 // "-showversion",
 "-Xms2048m",
 "-Xmx4096m"
 // "-verbose:gc",
 //"-XX:+UseG1GC",
 //"-XX:MaxGCPauseMillis=500"
)

lazy val javaTestOptions = Seq(
 // "-showversion",
 "-Xms2048m",
 "-Xmx4096m"
 // "-verbose:gc",
 //"-XX:+UseG1GC",
 //"-XX:MaxGCPauseMillis=500",
 //"-XX:MaxMetaspaceSize=4096m"
)

lazy val salsahLibs = Seq(
 // akka
 "com.typesafe.akka" % "akka-http-core-experimental_2.11" % "2.0-M2",
 "com.typesafe.akka" % "akka-http-experimental_2.11" % "2.0-M2",
 "com.typesafe.akka" % "akka-http-spray-json-experimental_2.11" % "2.0-M2",
 "com.typesafe.akka" % "akka-http-xml-experimental_2.11" % "2.0-M2",
 // testing
 "com.typesafe.akka" %% "akka-http-testkit-experimental" % "2.0-M2" % "test",
 "org.scalatest" %% "scalatest" % "2.2.5" % "test",
 "org.seleniumhq.selenium" % "selenium-java" % "2.35.0" % "test",
 "io.spray" %% "spray-http" % "1.3.3",
 "io.spray" %% "spray-httpx" % "1.3.3",
 "io.spray" %% "spray-util" % "1.3.3",
 "io.spray" %% "spray-io" % "1.3.3",
 "io.spray" %% "spray-can" % "1.3.3",
 "io.spray" %% "spray-caching" % "1.3.3",
 "io.spray" %% "spray-routing" % "1.3.3",
 "io.spray" %% "spray-json" % "1.3.2",
 "io.spray" %% "spray-client" % "1.3.2"
)

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 SALSAH Design Documentation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	SALSAH

SALSAH Design Documentation

	SALSAH Design Overview
	Introduction

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 SALSAH Design Overview

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	SALSAH

 	SALSAH Design Documentation

SALSAH Design Overview

Introduction

Some text about salsah version 2

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Sipi

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

Sipi

Sipi is a high-performance media server written in C++, for serving and
converting binary media files such as images and video. Sipi can efficiently
convert between many different formats on demand, preserving embedded
metadata, and implements the
International Image Interoperability Framework (IIIF) [http://iiif.io/]. Knora is designed
to use Sipi for converting and serving media files.

	Setup Sipi for Knora
	Setup and Execution

	Using Sipi in Test Mode

	Interaction Between Sipi and Knora
	General Remarks

	Adding Files to Knora: Using the GUI or directly the API

	Retrieving Files from Sipi

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Setup Sipi for Knora

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knora 0.1 documentation

 	Sipi

Setup Sipi for Knora

Setup and Execution

In order to serve files to the client application like the Salsah GUI, Sipi must be set up and running.
Sipi can be downloaded from its own github-repository: https://github.com/dhlab-basel/Sipi.
Please follow the instructions given in the README to compile it on your system.

Once it is compiled, you can run Sipi with the following option: ./local/bin/sipi --config=config/sipi.knora-config.lua
(or ./local/bin/sipi --config=sipi.knora-test-config.lua for using sipi for testing). Please see sipi.knora-config.lua
for the settings like URL, port number etc.
These settings need to be set accordingly in Knora’s application.conf. If you use the default settings both in Sipi
and Knora, there is no need to change these settings.

Whenever a file is requested from Sipi (e.g. a browser trying to dereference an image link served by Knora), a preflight
function is called.
This function is defined in sipi.init-knora.lua present in the Sipi root directory. It takes three parameters:
prefix, identifier (the name of the requested file), and cookie. File links created by Knora use the prefix
knora, e.g. http://localhost:1024/knora/incunabula_0000000002.jp2/full/2613,3505/0/default.jpg.

Given these information, Sipi asks Knora about the current’s users permissions on the given file.
The cookie contains the current user’s Knora session id, so Knora can match Sipi’s request with a given user profile and
determine the permissions this user has on the file.
If the Knora response grants sufficient permissions, the file is served in the requested quality. If the suer has preview
rights, Sipi serves a reduced quality or integrates a watermark.
If the user has no permissions, Sipi refuses to serve the file. However, all of this behaviour is defined in the preflight
function in Sipi and not controlled by Knora. Knora only provides the permission code.

See Sharing the Session ID with Sipi for more information about sharing the session id.

Using Sipi in Test Mode

If you just want to test Sipi with Knora without serving the actual files (e.g. when executing browser tests), you can
simply start Sipi like this: ./local/bin/sipi --config=config/sipi.knora-test-config.lua.
Then always the same test file will be served which is included in Sipi. In test mode, Sipi will not aks Knora about
the user’s permission on the requested file.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Interaction Between Sipi and Knora

 Navigation

 	
 index

 	
 previous |

 	Knora 0.1 documentation

 	Sipi

Interaction Between Sipi and Knora

General Remarks

Knora and Sipi (Simple Image Presentation Interface) are two complementary software projects.
Whereas Knora deals with data that is written to and read from a triplestore (metadata and annotations), Sipi takes care of storing,
converting and serving image files as well as other types of files such as audio, video, or documents (binary files it just stores and serves).

Knora and Sipi stick to a clear division of responsibility regarding files:
Knora knows about the names of files that are attached to resources as well as some metadata and is capable of creating the URLs for the client to request them from Sipi, but the whole handling of files
(storing, naming, organization of the internal directory structure, format conversions, and serving) is taken care of by Sipi.

Adding Files to Knora: Using the GUI or directly the API

To create a resource with a digital representation attached to, either the browser-based GUI (SALSAH) can be used
or this can be done by directly [1] addressing the API. The same applies for changing an existing digital representation for a resource. Subsequently, the first case will be called the GUI-case and the second the non GUI-case.

GUI-Case

In this case, the user may choose a file to upload using his web-browser. The file is directly sent to Sipi (route: create_thumbnail) to calculate a thumbnail hosted by Sipi
which then gets displayed to the user in the browser. Sipi copies the original file into a temporary directory and keeps it there (for later processing in another request). In its answer (JSON), Sipi returns:

	preview_path: the path to the thumbnail (accessible to a web-browser)

	filename: the name of the temporarily stored original file (managed by Sipi)

	original_mimetype: mime type of the original file

	original_filename: the original name of the file submitted by the client

Once the user finally wants to attach the file to a resource, the request is sent to Knora’s API
providing all the required parameters to create the resource along with additional information about the file to be attached.
However, the file itself is not submitted to the Knora Api,
but its filename returned by Sipi.

Create a new Resource with a Digital Representation

The POST request is handled in ResourcesRouteV1.scala and parsed to a CreateResourceApiRequestV1. Information about the file is sent separately
from the other resource parameters (properties) under the name file:

	originalFilename: original name of the file (returned by Sipi when creating the thumbnail)

	originalMimeType: original mime type of the file (returned by Sipi when creating the thumbnail)

	filename: name of the temporarily stored original file (returned by Sipi when creating the thumbnail)

In the route, a SipiResponderConversionFileRequestV1 is created representing the information about the file to be attached to the new resource. Along with the other parameters,
it is sent to the resources responder.

See Further Handling of the GUI and the non GUI-case in the Resources Responder for details of how the resources responder then handles the request.

Change the Digital Representation of a Resource

The request is taken care of in ValuesRouteV1.scala. The PUT request is handled in path v1/filevalue/{resIri} which receives the resource Iri as a part of the URL:
The submitted file will update the existing file values of the given resource.

The file parameters are submitted as json and are parsed into a ChangeFileValueApiRequestV1. To represent the conversion request for the Sipi responder,
a SipiResponderConversionFileRequestV1 is created. A ChangeFileValueRequestV1 containing the resource Iri and the message for Sipi is then created and sent to the values responder.

See Further Handling of the GUI and the non GUI-case by the Values Responder for details of how the values responder then handles the request.

Non GUI-Case

In this case, the API receives an HTTP multipart request containing the binary data.

Create a new Resource with a Digital Representation

The request is handled in ResourcesRouteV1.scala. The multipart POST request consists of two named body parts: json containing the resource parameters (properties)
and file containing the binary data as well as the file name and its mime type.
Using Python’s request module [http://docs.python-requests.org/en/master/user/quickstart/#post-a-multipart-encoded-file],
a request could look like this:

import requests, json

params = {...} // resource parameters
files = {'file': (filename, open(path + filename, 'rb'), mimetype)} // filename, binary data, and mime type

r = requests.post(knora_url + '/resources',
 data={'json': json.dumps(params)},
 files=files,
 headers=None)

The binary data is saved to a temporary location by Knora. The route then creates a SipiResponderConversionPathRequestV1
representing the information about the file (i.e. the temporary path to the file) to be attached to the new resource. Along with the other parameters,
it is sent to the resources responder.

See Further Handling of the GUI and the non GUI-case in the Resources Responder for details of how the resources responder then handles the request.

Change the Digital Representation of a Resource

The request is taken care of in ValuesRouteV1.scala. The multipart PUT request is handled in path v1/filevalue/{resIri} which receives the resource Iri as a part of the URL:
The submitted file will update the existing file values of the given resource.

For the request, no json parameters are required. So its body just consists of the binary data (cf. Python code example).
The values route stores the submitted binaries as a temporary file and creates a SipiResponderConversionPathRequestV1.
A ChangeFileValueRequestV1 containing the resource Iri and the message for Sipi is then created and sent to the values responder.

See Further Handling of the GUI and the non GUI-case by the Values Responder for details of how the values responder then handles the request.

Further Handling of the GUI and the non GUI-case in the Resources Responder

Once a SipiResponderConversionFileRequestV1 (GUI-case) or a SipiResponderConversionPathRequestV1 (non GUI-case) has been created and passed to the resources responder,
the GUI and the non GUI-case can be handled in a very similar way. This is why they are both implementations of the trait SipiResponderConversionRequestV1.

The resource responder calls the ontology responder to check if all required properties were submitted for the given resource type. Also it is checked
if the given resource type may have a digital representation. The resources responder then sends a message to Sipi responder that does a request to the Sipi server. Depending on the type of the message (SipiResponderConversionFileRequestV1 or SipiResponderConversionPathRequestV1), a different Sipi route is called.
In the first case (GUI-case), the file is already managed by Sipi and only the filename has to be indicated. In the latter case, Sipi is told about the location where Knora has saved the binary data to.

To make this handling easy for Knora, both messages have their own implementation for creating the parameters for Sipi (declared in the trait as toFormData). If Knora deals with a SipiResponderConversionPathRequestV1,
it has to delete the temporary file after it has been processed by SIPI. Here, we assume that we deal with an image.

For both cases, Sipi returns the same answer containing the following information:

	file_type: the type of the file that has been handled by Sipi (image | video | audio | text | binary)

	mimetype_full and mimetype_thumb: mime types of the full image representation and the thumbnail

	original_mimetype: the mime type of the original file

	original_filename: the name of the original file

	nx_full, ny_full, nx_thumb, and ny_thumb: the x and y dimensions of both the full image and the thumbnail

	filename_full and filename_full: the names of the full image and the thumbnail (needed to request the images from Sipi)

The file_type is important because representations for resources are restricted to media types: image, audio, video or a generic binary file. If a resource type requires an image representations
(subclass of StillImageRepresentation), the file_type has to be an image.
Otherwise, the ontology’s restrictions would be violated. Because of this requirement, there is a construct fileType2FileValueProperty mapping file types to file value properties.
Also all the possible file types are defined in enumeration.

Depending on the given file type, Sipi responder can create the apt message (here: StillImageFileValueV1) to save the data to the triplestore.

Further Handling of the GUI and the non GUI-case by the Values Responder

In the values responder, ChangeFileValueRequestV1 is passed to the method changeFileValueV1. Unlike ordinary value change requests,
the Iris of the value objects to be updated are not known yet. Because of this, all the existing file values of the given resource Iri have to be queried first.
Also their quality levels are queried because in case of a StillImageFileValue, we have to deal with a file value for the thumbnail and another one for the full quality representation.
When these two file values are being updated, the quality levels have to be considered for the sake of consistency (otherwise a full quality value’s knora-base:previous-value may point to a thumbnail file value).

With the file values being returned, we actually know about the current Iris of the value objects. Now the Sipi responder is called to handle the file conversion request (cf. Further Handling of the GUI and the non GUI-case in the Resources Responder).
After that, it is checked that the file_type returned by Sipi responder corresponds to the property type of the existing file values. For example, if the file_type is an image, the property pointing to the current file values
must be a hasStillImageFileValue. Otherwise, the user submitted a non image file that has to be rejected.

Depending on the file_type, messages of type ChangeValueRequestV1 can be created.
For each existing file value, such a message is instantiated containing the current value Iri and the new value to be created (returned by the sipi responder).
These messages are passed to changeValueV1 because with the described handling done in changeFileValueV1, the file values can be changed like any other value type.

In case of success, a ChangeFileValueResponseV1 is sent back to the client, containing a list of the single ChangeValueResponseV1.

	[1]	Of course, also the GUI uses the API. But the user does not need to know about it.

Retrieving Files from Sipi

URL creation

Binary representions of Knora locations are served by Sipi. For each file value, Knora creates several locations representing different quality levels:

"resinfo": {
 "locations": [
 {
 "duration": ​0,
 "nx": ​95,
 "path": "http://sipiserver:port/knora/incunabula_0000000002.jpg/full/full/0/default.jpg",
 "ny": ​128,
 "fps": ​0,
 "format_name": "JPEG",
 "origname": "ad+s167_druck1=0001.tif",
 "protocol": "file"
 },
 {
 "duration": ​0,
 "nx": ​82,
 "path": "http://sipiserver:port/knora/incunabula_0000000002.jp2/full/82,110/0/default.jpg",
 "ny": ​110,
 "fps": ​0,
 "format_name": "JPEG2000",
 "origname": "ad+s167_druck1=0001.tif",
 "protocol": "file"
 },
 {
 "duration": ​0,
 "nx": ​163,
 "path": "http://sipiserver:port/knora/incunabula_0000000002.jp2/full/163,219/0/default.jpg",
 "ny": ​219,
 "fps": ​0,
 "format_name": "JPEG2000",
 "origname": "ad+s167_druck1=0001.tif",
 "protocol": "file"
 }
 ...
],
"restype_label": "Seite",
"resclass_has_location": true,

Each of these paths has to be handled by the browser by making a call to Sipi, obtaining the binary representation in the desired quality.
To deal with different image quality levels, Sipi implements the IIIF standard [http://iiif.io/api/image/2.0/]. The different quality level paths
are created by Knora in ValueUtilV1.

Whenever Sipi serves a binary representation of a Knora file value (indicated by using the prefix knora in the path), it has to make a request to Knora’s
Sipi responder to get the user’s permissions on the requested file. Sipi’s request to Knora contains a cookie with the Knora session id the user has obtained when logging in to Knora:
As a response to a successful login, Knora returns the user’s session id and this id is automatically sent to Sipi by the browser, setting a second cookie for the communication with Sipi.
The reason the Knora session id is set in two cookies, is the fact that cookies can not be shared among different domains. Since Knora and Sipi are likely to be running
under different domains, this solution offers the necessary flexibility.

Sharing the Session ID with Sipi

Whenever a file is requested, Sipi asks Knora about the currents user’s permissions on the given file. This is achieved by sharing the Knora session id with Sipi.
When the user logs in to Knora using his browser, a request is sent to Sipi submitting the session id the user got back from Knora, setting a second session cookie.
Now the user has two session cookies containing the same session id: one for the communication with Knora and one for the communication with Sipi. However, Sipi does not handle sessions.
It just sends the given Knora session id to Knora.

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

 Index

 Navigation

 	
 index

 	Knora 0.1 documentation

Index

 Copyright 2015, Lukas Rosenthaler, Benjamin Geer, Ivan Subotic, Tobias Schweizer, André Kilchenmann, and Sepideh Alassi.
 Created using Sphinx 1.3.1.

_images/visualvm-snapshot.png
v & Local

& Visualvm
48 idea (pid 72032)

» & com.intellij.rt.execution.applicatior
A T e
& org jetbrains.jps.cmdline.Launcher
& org jetbrains.plugins.scala.nailgun |

& Remote

5 VM Coredumps.

Snapshots

VisualVM 1.3.9

com.ntelli.rt.execution.application AppMain (pid 72182) &3

[Overview b Monitor = Threads 43 sampler | iSnapshot 12:0335 PV

C com.intellij.rt.execution.application.AppMain (pid 72182)

Profiler Snapshot

View: | (7 Methods Q| [&

Call Tree - Method
&3 Monitor Ctrl-Break

=3 webapi-

5 webap
= webap
5 webap
= webap
= webap
3 webap
= webap
= webap

scheduler-1
akka.io.pinned-dispatcher-26
akka.actor.default-dispatcher-23
akka.actor.default-dispatcher-6
akka.actor.default-dispatcher-27
akka.actor.default-dispatcher-29
akka.actor.default-dispatcher-35
akka.actor.default-dispatcher-20
akka.actor.default-dispatcher-4

TR Method Name Filter (Contains)

Total Time [%] v Total Time
I 490,020 ms
I 490,020 ms
I 490,020 ms
1,905 ms

1,903 ms

1712 ms

198 ms

196 ms

194 ms

87.1ms

[Combined @ Info

Total Time (CPU)

0.000 ms.
0.000 ms.
0.000 ms.
1,905 ms
1,903 ms
1712 ms
198 ms
196 ms
194 ms
87.1ms

_images/graphviz-215e9e1e040fba5304e8f80ae037657927255bc2.png
knora-base:Permission

Tdf:subClassOf 1df:subClassOf

knora-base: AdministrativePermission knora-base:DefaultObject AccessPermission

_images/visualvm-sampler.png
VisualVM 1.3.9

com.ntelli.rt.execution.application AppMain (pid 72182) &3

| [overview [Monitor = Threads

3B 1dea (pid 72032) C com.intellij.rt.execution.application.AppMain (pid 72182)

& com.intellj.rt.execution.applicatior Sampler (3 settings

A T e

& org jetbrains.jps.cmdline.Launcher

& org jetbrains.plugins.scala.nailgun |
& Remore Status: sampling inactive
5 VM Coredumps.
(& Snapshots

sample: | ©cru | (@wemony| Wsio

Summary

CPU sampling:
Available. Press the 'CPU' button to start collecting performance data.

Memory sampling:
Available. Press the 'Memory’ button to start collecting memory data.

_images/debug.png
Authenticator.scala - webapi - [~/Soft/Code/github/KnoraBasle/webapi]

requestContext: RequestConte

L

s webapi - B src - W main B scala Pmorg P knora = P webapi = Pm routing = @ Authenticator.scala L5 %Knora APl v W | \55 vgs
Project v @ = | #&- I= () sipiTestjava [2 webapiBuild.sbt [B application.conf © Authenticator.scala
v Iiweb.api ~[Soft/Code/github/KnoraBasle/webap Authenticator getUserProfileVi(...)
> B .idea * found in the cache. If no credentials are found, then a default [[UserProfileV1l] is returned. If Wk
> Bu_assets * not correct, then the corresponding error is returned.
»> B _fuseki *
» Bm_test_data * @param requestContext a [[RequestContext]l] containing the http request
> -Fb - * @param system the current [[ActorSystem]]
. * @return a [[UserProfileV1]]
> Bmlogs */
» = project [webapi-build] sources root def c')etUserProfileVI(requestContext: RequestContext) (implicit system: ActorSystem, executionContext: EX€
» B scripts © q n n o o
if (settings.skipAuthentication) {
v Basrc UserProfileVl(UserDataVl(settings. fallbacklLanguage)).ofType(UserProfileType.RESTRICTED)
> it }
v B main else {
v B=resources // let us first try to get the user profile through the session id from the cookie
= getUserProfileV1FromSessionId(requestContext) match {
> Emhttps case Some(userProfile) =>
[# application.conf log.debug(s"Got this UserProfileVl through the session id: '${userProfile.toString}'")
= icati _loi /* we return the userProfileVl without sensitive information *x/
application.conf-loic h fil ith itive inf :
O eprsestiem et userProfile.ofType(UserProfileType.RESTRICTED)
e pp) - case None => {
femlogback.xml log.debug("No cookie or valid session id, so let's look for supplied credentials")
A mappingXMLToStandoff.xsd extractCredentials(requestContext) match {
> Buscala case Some((e, p)) =>
> Bmtwirl log.debug(s"found some credentials '$e', '$p', lets try to authenticate them fir
»> Bmtarget authenticateCredentials(e, p, session = false)
» Bmtest log.debug("Supplied credentials pass authentication, get the UserProfileVl") m
Run: - Scala Console _
> /Library/Java/JavaVirtualMachines/jdk1.8.0_121.jdk/Contents/Home/bin/java ...
[2017-03-15 09:49:07,256] INFO - KnoraService(akka://webapi) - ResponderManager ready: -
[2017-03-15 09:49:07,271] INFO - KnoraService(akka://webapi) - StoreManager ready: InitializedResponse(true)
= [2017-03-15 09:49:07,271] INFO - KnoraService(akka://webapi) - ActorSystem webapi started
%5 [2017-03-15 09:49:10,478] INFO - HttpTriplestoreConnector — Connection OK: 4026
”
= Process finished with exit code 130 (interrupted by signal 2: SIGINT)
=
22 W
<

(9 7:43 LF# UTF-8% Git:develop *

v & Q

_images/edit-config.png
webapi - [~/Soft/Code/github/KnoraBasle/webapil

s webapi

;
- oslwr 1 e Contgrations..

» IEwebapi ~/Soft/Code/github/KnoraBasle/webapi
» |l External Libraries

Search Everywhere Double {*
Go to File +80
Recent Files 38E

Navigation Bar 881

Messages SBT Sync B L
X =V il SBT 'webapi' project refresh failed
T Error while importing SBT project:
3y @ [warn] :: org.eclipse.rdf4j#rdf4j-rio—api;2.0M3!rdf4j-rio-api.jar(doc)
o [warn] :: org.rogach#scallop_2.12;2.0.5!scallop_2.12.jar(doc)

[warn] :: com.typesafe#ssl-config-core_2.12;0.2.1!ssl-config-core_2.12.jar(doc)

? [warn] :: org.eclipse.rdf4j#rdf4j-rio-languages;2.0M3!rdf4j-rio-languages.jar(doc)

[warn] :: org.scala-lang#scala-library;2.12.1!scala-library.jar(doc)

[warn] :: org.scala-lang.modules#scala-java8-compat_2.12;0.8.0!scala-java8-compat_2.12.jar(doc)
[warn] :: com.typesafe.akka#akka-testkit_2.12;2.4.16!akka-testkit_2.12.jar(src)

[warn] :: com.typesafe.akka#akka-testkit_2.12;2.4.16!akka-testkit_2.12.jar(doc)

[warn] :: com.typesafe.akka#akka-stream-testkit_2.12;2.4.16!akka-stream-testkit_2.12.]ar(doc)

(o e e b6 com Meamacodds albadinllbs chonas Moothbds O ORe® 40 O@Nalblbe otoans Sactldn © 00

]

Git: develop+ & Q

_images/visualvm-overview.png
v 5] Local

& Visualvm
48 idea (pid 72032)
& com.intellj.rt.execution.applicatior
A T e
& org jetbrains.jps.cmdline.Launcher
& org jetbrains.plugins.scala.nailgun |

& Remote

5 VM Coredumps.

Snapshots

VisualVM 1.3.9

ol executian PR Appan (73 72182) £
EC [Monitor [Threads

C com.intellij.rt.execution.application.AppMain (pid 72182)
Overview

: localhost

intellij.rt.execution.application. AppMain
Arguments: org knora.webapi.Main

JVM: Java HotSpot(TM) 64-Bit Server VM (25.31-b07, mixed mode)

Java: version 1.8.0_31, vendor Oracle Corporation

Java Home: /Library/Java/JavaVirtualMachines /jdk1.8.0_31.jdk/Contents/Home/jre
VM Flags: <none>

Heap dump on OOME: disabled

Saved data /| [JvM arguments | system properties

£ Sampler

Saved data

Details

Thread Dumps: 0 -Dvisualvm.id=1067644953436636

Heap Dumps: 0 -Xms2048M
Profiler Snapshots: 0 -Xmx2048M

-Xss6M

-Dvisualvm.id=1067607990572842
-Didealauncher.port=7532

-Didealauncher.bin.path=/Applications Intelli) IDEA CE.app/Contents /bin

-Dfile.encoding=UTF-8

_images/graphviz-8b1df8db4b614a37438e0c31f4204c2749a8a28a.png
pompidou

value_C

hasArtist

value_B

isInCollection

“The Persistence of Memory”

“Salvador Dali’

“Centre Pompidou”

hasCollectionName

_images/app-config-setup.png
v Mawely

YYYYYYYVYYY

X

-
&
P

N =

e 1§ [Koora AP1 +
- © % | % I° @ ProjectsResponderviscala x @) LoggingAdapterclass

figurations

+ -[¥ - Name: Knora AP
v @ Application

e

» [2Scala Console Main class: org.knora.webapi.Main
> % Defaults

VM options:

Program arguments:

Working directory: /Users|ljaouen/Soft/Code/github/KnoraBasle/webapi

Environment variables:

Use classpath of module: | s webapi

JRE: 18

Enable capturing form snapshots

~ Before launch: Build, Activate tool window.
1§ Build

Show this page ¥/ Activate tool window

[H Compilation completed with 4 errors snd O warmings in 21s 985ms (6 mimutes sgol ®

[y ———

Single instance only

EJNIE

m

Git: wipfidea_setup *

col

ionFi

ml,

Q

_static/comment.png

_static/plus.png

_images/graphviz-b01455dc33de4ae8573faef837ad91b6fd5b125b.png
kb:TextValue

b:valueHasString kb:valueCreationDate

ex:book2

kb:DateValue

kb:valueCreationDate

*King Lear’

2015-08-12 13:00

2364669

2364669

2015-08-12 13:03

_images/design-diagram.png
Akka

akka.http

routing functions

KnoraExceptionHandler

ask

ResponderManagerV1

forvar

forward forwara

pool of
ResoutcesResponderV1
actors

pool o
ValuesResponderV1
actors

ask

ask ask

StoreManagerV1

=

pool of
HitpTriplestoreActors

HTTP

Triplestore

_images/graphviz-2d0c69e077440bd5dab8f7258daafa794c4a27bb.png
Start

Get all groups for user

A 2

Get all Project Administration Permissions received through group membership

A 2

Q&cide if user is allowed to perform operation

_images/graphviz-05959f39932d73c2605053a9fb5e6c588b76cfac.png
knora-base:knoraProject
Knora-base:forProject

knora-base:forGroup Tora-base: UserGroup
knora-base:hasPermissions

Administrative permissions compact format string

knora-base: AdministrativePermission

_images/launch-visualvm.png
S
vain~| b ¥ ¥ @ @

_images/setting-tab-space.png
s webapi [src [l main | Preferences

Q Editor > Code Style > Scala
M .iweb'apl » Appearance & Behavior
> m.idea Scheme: | Default (1) | v Manage...
» Bm_assets Keymap Set from...
> Bu_fuseki v Editor Tabs and Indents Spaces Wrapping and Braces Blank Lines ScalaDoc Imports Multi-line strings Type Annotations =2
»> Bm_test_data » General class A {
> Mmlib » Colors & Fonts Use tab character def foo[Al(): Int = 42
»> M logs Exe
» = project [webapi-buil« v Code Style foo[Int]()
> B scripts HOCON Tab size: 4 }
> bmit
o st Java Continuation indent: | 4
v D=resources ActionScript Keep indents on empty lines
»> Bmhttps CFML)
!3 application CoffeeScript
& application o i |
& application
28 logback.xm Gherkin
2 mappingX\ Groovy
» Buscala GsP
> B twirl
»> mtarget AL
> Bmtest HTML
> Bmtarget JavaScript
» mvendor JSON
& .gitignore
& Dockerfile JSP
& README.md JSPX
[2 WebapiBuild.sbt Kotlin
» |l External Libraries
Less
Properties
Sass
? Cancel OK =
D Loaded classes are up to date. Nothing to reload. (50 minutes ago) ¥) 243:9 LF+ UTF-8% Git:develop + Q

B —— = - e e - S

_images/graphviz-22decc75f642a168dd43751963d6ad76a95ea2ad.png
Get all groups for user
Get all Resource Creation Permissions Get all Default Object Access Permissions

Get Default Object Access Permissions attached to Groups

\

Decide if user is allowed to create the resource type Get Default Object Access Permissions attached to Resources/Values

/

Calculate maximum Default Object Access Permissions

/

Create Resource/Values with maximum Default Object Access Permissions

_images/import-from-sbt.png
Import Project

Create project from existing sources

‘ ® Import project from external model

& Eclipse
Fx Flash Builder

(& Gradle
M Maven

Help Cancel Next

_images/graphviz-4bde7ecf7e6fee0179df808f79a78f44bb350eae.png
“Das Narrenschiff”

“Sebastian Brant”

_images/graphviz-46f467a55dc88ba86ea2c03c92c3b3b1c32cab80.png
@ predicate

_images/install-scala-plugin.png
Customize IntelliJ IDEA

Ul Themes — Keymaps — Launcher Script = Default plugins = Featured plugins

Download featured plugins

We have a few plugins in our repository that most users like to download. Perhaps, you need them too?

Scala Live Edit Tool
Plugin for Scala language support Provides live edit
HTML/CSS/JavaScript
32% ‘ Install
X Cancel

NodeJS Angular

Node.js integration Angular 1&2 support
Install Install

New plugins can also be downloaded in Preferences | Plugins

Skip Remaining and Set Defaults Back to Default plugins

IdeaVim

Emulates Vim editor

A Recommended only if you are
familiar with Vim.

Install and Enable

Start using IntelliJ IDEA

_images/visualvm-call-tree.png
v & Local

¥ Visualvm
48 idea (pid 72032)

» & com.intellij.rt.execution.applicatior
e
& org jetbrains.jps.cmdline.Launcher
& org.jetbrains.plugins.scala.nailgun.

& Remote

(55 VM Coredumps

(&) snapshots

‘Com intell.rt.execution application AppMain (pid 72182)
[d Overview [l Monitor [=] Threads £ Sampler [snapshot] 12:03:35 PM ©

C com.intellij.rt.execution.application.AppMain (pid 72182)
Profiler Snapshot

=] View: | () Methods Q& &

Call Tree - Method Total Time (%]~ Total Time
onfunsmaps$1 0 97.4ms (496

onfunsmap$1 0
2sponders v1 ResourcesResponderV1§SLambda$ 1466.309930310.apply 0
si.responders.v1 ResourcesResponderV1.$anonfuns getContextResponseV1$17
ion.immutable List foldLeft (
ection.LinearSeqOptimized.foldLefts
ollection.LinearSeqOptimized.foldLeft (
_knora.webapi.responders.v1 ResourcesResponderV1s SLambda$ 1468.1759287296.apply ()
org.knora.webapi.responders.v1.ResourcesResponderV1.$anonfun$getContextResponse [N
¥ org.knora.webapi.res ponders.v1.ResourcesResponderV1.createSourceObjectFromResu [N
v % org.knora.webapi.util.PermissionUtiIV1S.getUserPermissionV1
v M org.knora.webapi.util.PermissionUtilV1S.parsePermissions (
v % scala.collection. AbstractTraversable.map (
v % scala.collection. TraversableLike.maps$ (
v % scala.collection. TraversableLike.map (
v % scala.collection.mutable WrappedArray.foreach (
v % scala.collection.IndexedSeqOptimized.foreachs
v % scala.collection.IndexedSeqOptimized foreach (
v % scala.collection. TraversableLikeS SLambda$ 11.600746945.a
v % scala.collection. TraversableLike.$anonfuns map$ 1 0
v M org.knora.webapi.util.PermissionUtilV1$ $ SLambdas 1 [N
v M org.knora.webapi.util.PermissionUtiV1S.Sanonfui
v % scala.collection.immutable StringOps.split
v ¥ scala.collection.immutable.StringLike.splits [N
v ¥ scala.collection.immutable.StringLike.sp [N
@ javalang.String.split 0 97.4ms (496

T Method Name Filter (Contains)

ElHot Spots [z Combined @ Info

Total Time (CPU)
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms
97.4ms

_images/create-app.png
W webapi

Project

>

~N O e

mwebapi ~/Sof
» |l External Librar

e ® ol o]

SBT

%
Add New Configuration
¥ Ant Target
= Applet

5 the+ button to create a new configuration based on default settings

@ Arquillian JUnit

@® Arquillian TestNG

@ Chromium Remote
'] Compound

& Cucumber java

D Firefox Remote

(5 Gradle

& Griffon

Grunt.js

¥ Gulp.js

El JAR Application

JavaScript Debug

<] JUnit

K Kotlin

K Kotlin (JavaScript - experimental)

K Kotlin script
£+ Maven

¥/ Confirm rerun with process termination

Temporary configurations limit:

5

Cancel

(doc)

OK oc)

I

Git: develop +

]

_images/graphviz-a9db8d9aeacae2f9f5bda2de484dee3ac8677135.png
Get all permissions attached to Resource/Value

Get all groups for user

Calculate max permission user has on Resource/Value through group membership

A J

Decide if user is allowed to perform operation

_images/visualvm-snapshot-button.png
VisualVM 1.3.9

‘com intell.rt.execution application AppMain (pid 72182) €
v & Local [8 Overview [Monitor =] Threads
(] visualvm
3B 1dea (pid 72032) C com.intellij.rt.execution.application.AppMain (pid 72182)
& com.intellj.rt.execution.applicatior
A T e
& org jetbrains.jps.cmdline.Launcher
& org jetbrains.plugins.scala.nailgun |
& Remote Status: CPU sampling in progress
5 VM Coredumps.
& snapshors CPU samples | Thread CPU Time
@] @ [Esnapshor Thread Dump
Hot Spots - Method Self Time (5] ~ Self Time Self Time (CPU) Total Time Total Time (CPU) @
com.intellj.rt.execution.application.AppMain$ L.run. 0.000 ms. 0.000 ms. 0.000 ms.
akka.actorLightArrayRevolverScheduler$ Sanon$4.ru 0.000 ms. 0.000 ms. 0.000 ms.
akka.actor LightArrayRevolverScheduler$ SanonS4.ne 0.000 ms. 0.000 ms. 0.000 ms.
akka.actor LightArrayRevolverScheduler.waitNanos 0.000 ms, 0.000 ms, 0.000 ms,
0.000 ms, 0.000 ms,
0.000 ms, 0.000 ms,
0.000 ms, 0.000 ms,
0.000 ms, 0.000 ms,
0.000 ms, 0.000 ms,
0.000 ms, 0.000 ms,

Sampler Settings

sample: | ©cru | | @wemony| | Eswop

akka.dispatch. Taskinvocation.run 0.000 ms.
akka.util.SerializedSuspendableExecutionContext.rui 0.000 ms.
akka.util SerializedSuspendableExecutionContext.rui 0.000 ms.
akka.io.SelectionHandlerSChannelRegistrylmpls Sano 0.000 ms.
akka.io.SelectionHandlerChannelRegistrylmplSTask. 0.000 ms.
akka.io.SelectionHandlerSChannelRegistrylmpls Sano 0.000 ms.

TR Method Name Filter (Contains)

_static/minus.png

_images/graphviz-2e50e86bad25855875315d1757944b13cb435ca3.png
knora-base:knoraProject

Knora-base:forProject

knora-base:UserGroup
knora-base:forGroup

knora-base:forResourceClass

knora-base:DefaultObject AccessPermission Resource Class Name

knora-base:forProperty

knora-base:hasPermissions
Resource Property Name

il

Default object access permission compact format string

_images/breakpoint.png
Authenticator.scala - webapi - [~/Soft/Code/github/KnoraBasle/webapi]

s webapi - B src -